Skip to main content Accessibility help
×
Home

SEANUTS: the nutritional status and dietary intakes of 0.5–12-year-old Thai children

  • Nipa Rojroongwasinkul (a1), Kallaya Kijboonchoo (a1), Wanphen Wimonpeerapattana (a1), Sasiumphai Purttiponthanee (a1), Uruwan Yamborisut (a1), Atitada Boonpraderm (a1), Petcharat Kunapan (a1), Wiyada Thasanasuwan (a1) and Ilse Khouw (a2)...

Abstract

In the present study, we investigated nutritional status and health-related factors in a multistage cluster sample of 3119 Thai urban and rural children aged 0·5–12·9 years. In a subsample, blood samples were collected for the measurement of Hb, transferrin receptor, vitamin A and vitamin D concentrations. The prevalence of stunting and underweight was higher in rural children than in urban children, whereas the wasting rate was similar in both rural and urban areas. Among children aged 3·0–5·9 years, the prevalence of overweight was significantly higher in urban areas than in rural areas and so was the obesity rate in children aged 6·0–12·9 years. Protein intakes of all age groups were relatively high in both the areas. Intakes of Ca, Fe, Zn and vitamin C were significantly higher in urban areas than in rural areas. The prevalence of anaemia in rural areas was twice as high as that in urban areas, particularly in infants and young children. However, the prevalence of Fe-deficiency anaemia was similar in both urban and rural areas. While the prevalence of vitamin A deficiency (by serum retinol cut-off < 0·7 μmol/l) seemed to be very low, vitamin A insufficiency (by serum retinol cut-off < 1·05 μmol/l) was more prevalent (29·4–31·7 %) in both the areas. The prevalence of vitamin D insufficiency ranged between 27·7 and 45·6 % among the children. The present study indicates that the double burden of malnutrition is still a major public health problem in Thailand. Further studies need to explore the associated risk factors for these nutrient deficiencies. Effective strategies and actions are needed to tackle the nutritional problems in Thai children.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      SEANUTS: the nutritional status and dietary intakes of 0.5–12-year-old Thai children
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      SEANUTS: the nutritional status and dietary intakes of 0.5–12-year-old Thai children
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      SEANUTS: the nutritional status and dietary intakes of 0.5–12-year-old Thai children
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: K. Kijboonchoo, fax +662 4419344, email kallaya.kij@mahidol.ac.th

References

Hide All
1Kosulwat, V (2002) The nutrition and health transition in Thailand. Public Health Nutr 5, 183189.
2Cohen, B (2006) Urbanization in developing countries: current trends, future projections, and key challenges for sustainability. Technol Soc 28, 6380.
3Jitnarin, N, Kosulwat, V, Rojroongwasinkul, N, et al. (2010) Risk factors for overweight and obesity among Thai adults: results of the National Thai Food Consumption Survey. Nutrients 2, 6074.
4Jones, G (2002) Southeast Asian urbanization and the growth of mega-urban regions. J Popul Res 19, 119136.
5Oner, N, Vatansever, U, Sari, A, et al. (2004) Prevalence of underweight, overweight and obesity in Turkish adolescents. Swiss Med Wkly 134, 529533.
6Wang, Y (2001) Cross-national comparison of childhood obesity: the epidemic and the relationship between obesity and socioeconomic status. Int J Epidemiol 30, 11291136.
7Sakamoto, N, Wansorn, S, Tontisirin, K, et al. (2001) A social epidemiologic study of obesity among preschool children in Thailand. Int J Obes 25, 389394.
8Hirata, M, Kuropakornpong, V, Funahara, Y, et al. (1998) Obesity among school children in a province of Southern Thailand and its association with socioeconomic status. Environ Health Prev Med 3, 6772.
9de Onis, M & Blössner, M (2000) Prevalence and trends of overweight among preschool children in developing countries. Am J Clin Nutr 72, 10321039.
10National Institute for Health Care Management Foundation (2004) Obesity in Young Children: Impact and Intervention. Washington: National Institute for Health Care Management Foundation, pp. 112.
11Hossain, P, Kawar, B & Nahas, EM (2007) Obesity and diabetes in the developing world – a growing challenge. N Engl J Med 3563, 213215.
12Hunt, JM (2005) The potential impact of reducing global malnutrition on poverty reduction and economic development. Asia Pac J Clin Nutr 14, 1038, (CD Supplement).
13Behrman, RJ, Alderman, H & Hoddinott, J (2004) Hunger and Malnutrition. In Global Crises, Global Solutions: First Edition, pp.363–420 [B Lomborg, editor]. Cambridge: Cambridge Univ Press.
14Doak, CM, Adair, LS, Monteiro, C, et al. (2000) Overweight and underweight coexist within households in Brazil, China and Russia. J Nutr 130, 29652971.
15Aekplakorn, W (editor) (2011) Report on National Health Examination Survey IV 2008–2009: Children Health Nonthaburi: National Health Examination Survey Office, Health System Research Institute.
16Thurlow, RA, Winichagoon, P & Pongcharoen, T, et al. (2005) Risk of zinc, iodine and other micronutrient deficiencies among school children in North East Thailand. Eur J Clin Nutr 60, 623632.
17Ministry of Public Health of Thailand (2010) Thailand Health Profile 2005–2007. Bangkok: Printing Press, The War Veterans Organization of Thailand.
18Winichagoon, P (2002) Prevention and control of anemia: Thailand experiences. J Nutr 132, 862S866S.
19Holick, MF (2007) Vitamin D deficiency. N Engl J Med 357, 266281.
20Thacher, TD, Fischer, PR & Strand, MAet al. (2006) Nutritional rickets around the world: causes and future directions. Ann Trop Paediatr 26, 116.
21Florentino, FR (2002) The burden of obesity in Asia: challenges in assessment, prevention and management. Asia Pacific J Clin Nutr Suppl., 11, S676S680.
22World Health Organization (2006) WHO Child Growth Standards: Length/height-for-age, Weight-for-age, Weight-for-length, Weight-for-height and Body Mass Index-for-age: Methods and Development. WHO Multicentre Growth Reference Study Group. Geneva: WHO.
23de Onis, M, Onyango, AW & Borghi, E, et al. (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85, 660667.
24Lohman, GT, Roche, FA & Martorell, R (editors) (1988) Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books.
25World Health Organization (1995) Physical Status: The Use and Interpretation of Anthropometry. WHO Technical Report Series no. 854. Geneva: WHO.
26World Health Organization/UNICEF/UNU (2001) Iron Deficiency Anemia: Assessment, Prevention and Control. A Guide for Programme Managers. Geneva: WHO.
27Phiri, K, Calis, J, Siyasiya, A, et al. (2009) New cut-off values for ferritin and soluble transferring receptor for the assessment of iron deficiency in children in a high infection pressure area. J Clin Pathol 62, 11031106.
28de Pee, S & Dary, O (2002) Biochemical indicators for vitamin A deficiency: serum retinol and serum retinol binding protein. J Nutr 132, 2895s2901s.
29Mithal, A, Wahl, D, Bonjour, J, et al. (2009) Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 20, 18071820.
30Greer, F (2009) Defining vitamin D deficiency in children: beyond 25-OH vitamin D serum concentrations. Pediatrics 124, 14711473.
31Barr, SI, Murphy, SP & Poos, MI (2002) Interpreting and using the dietary references intakes in dietary assessment of individuals and groups. J Am Diet Assoc 102, 780788.
32Jitnarin, N, Kosulwat, V, Rojroongwasinkul, N, et al. (2011) Prevalence of overweight and obesity in Thai population: results of the national Thai food consumption survey. Eat Weight Disord 16, e242e249.
33Dodd, KW (1996) A Technical Guide to C-SIDE. Dietary Assessment Research Series Report 9. CARD Technical Report 96-TR32. Ames, IA: Center for Agricultural and Rural Development, Iowa State University.
34Dodd, KW (1996) A User's Guide to C-SIDE: Software for Intake Distribution Estimation Version 1.0. CARD Technical Report 96-TR31. Ames, IA: Center for Agricultural and Rural Development, Iowa State University.
35Gorstein J, Sullivan K, Parvanta I, et al. (2007) Indicators and Methods for Cross-sectional Surveys of Vitamin and Mineral Status of Populations. Ottawa/Atlanta: The Micronutrient Initiative and the Centers for Disease Control and Prevention.
36Aekplakorn, W & Mo-suwan, L (2009) Prevalence of obesity in Thailand. Obes Rev 10, 589592.
37Best, C, Neufingerl, N, van Geel, L, et al. (2010) The nutritional status of school-aged children: why should we care? Food Nutr Bull 31, 400417.
38Frongillo, EJ (1999) Symposium: causes and etiology of stunting. Introduction. J Nutr 129, 529S530S.
39Martorell R, Rivera J, Kaplowitz H, et al. (1992) Long-term consequences of growth retardation during early childhood, pp. 143-149. In Human Growth: Basic and Clinical Aspects [Hernandez M, Argente J, editors]. Amsterdam: Elsevier Science.
40Brown K, Dewey K, Allen H (editors) (1998) Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge. Geneva: WHO (WHO/NUT/98.1).
41Cook, S, Weitzman, M, Auinger, P, et al. (2003) Prevalence of a metabolic syndrome phenotype in adolescents: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med 157, 821827.
42American Diabetes Association (2000) Type 2 diabetes in children and adolescents. Pediatrics 105, 671680.
43Murphy, SP & Poos, MI (2002) Dietary reference intakes: summary of applications in dietary assessment. Public Health Nutr 5, 843849.
44Dwyer, J, Picciano, M & Raiten, D (2003) Estimation of usual intakes: what we eat in America – NHANES. J Nutr 133, 609s623s.
45Murphy, SP (2003) Collection and analysis of intake data from the integrated survey. J Nutr 133, 585S589S.
46Jahns, L, Arab, L, Carriquiry, AL, et al. (2005) The use of external within-person variance estimates to adjust nutrient intake distributions over time and across populations. Public Health Nutr 8, 6976.
47Carriquiry, AL (2003) Estimation of usual intake distributions of nutrients and foods. J Nutr 133, 601s608s.
48Black, A, Goldberg, G, Jebb, S, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 2. Evaluating the results of published surveys. Eur J Clin Nutr 45, 583599.
49Aekplakorn, W & Satheannoppakao, W (editors) (2011) Report on National Health Examination Survey IV 2008–2009: Food Consumption of Thai Population. Nonthaburi: National Health Examination Survey Office, Health System Research Institute.
50Kalkwarf, HJ, Khoury, JC & Lanphear, BP (2003) Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr 77, 257265.
51Nicklas, TA (2003) Calcium intake trends and health consequences from childhood through adulthood. J Am Coll Nutr 22, 340356.
52World Health Organization, Centers for Disease Control (2008) Worldwide Prevalence of Anaemia 1993–2005. WHO Global Database on Anaemia. Geneva: WHO.
53Baille, F, Morrison, A & Fergus, I (2003) Soluble transferrin receptor: a discriminating assay for iron deficiency. Clin Lab Haematol 25, 353357.
54Cook, JD (2005) Diagnosis and management of iron deficiency anemia. Best Pract Res Clin Haematol 18, 319322.
55Russia, U, Flowers, C, Madan, N, et al. (1995) Serum transferrin receptor levels in the evaluation of iron deficiency in the neonate. Acta Pediatr Jpn 38, 455459.
56Khor, GL (2003) Update on the prevalence of malnutrition among children in Asia. Nepal Med Coll J 5, 113122.
57Grantham-McGregor, S & Ani, C (2001) A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 131, 649S666S.
58Sungthong, R, Mo-Suwan, L & Chongsuvivatwong, V (2002) Effects of haemoglobin and serum ferritin on cognitive function in school children. Asia Pac J Clin Nutr 11, 117122.
59Halterman, JS, Kaczorowski, JM, Aligne, CA, et al. (2001) Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 107, 13811386.
60Otero, G, Pliego-Rivero, FB, Porcayo-Mercado, R, et al. (2008) Working memory impairment and recovery in iron deficient children. Clin Neurophysiol 119, 17391746.
61World Health Organization (1996) Indicators for Assessing Vitamin A Deficiency and Their Application in Monitoring and Evaluation Intervention Programmes. Geneva: WHO.
62Pasricha, SR & Biggs, BA (2010) Under-nutrition among children in South and South-East Asia. J Pediatr Child Health 46, 497503.
63Arabi, A, Rassi, RE & Fuleihan, GE (2010) Hypovitaminosis D in developing countries-prevalence, risk factors and outcomes. Nat Rev Endocrinol 6, 550561.
64Lips, P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implication. Endocrinol Rev 22, 477501.
65Vieth, R, Bischoff-Ferrari, H, Boucher, BJ, et al. (2007) The urgent need to recommend and intake of vitamin D that is effective. Am J Clin Nutr 85, 649650.
66Hollis, BW (2005) Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr 135, 317322.
67González-Gross, M, Valtueña, J, Breidenassel, C, et al. (2012) Vitamin D status among adolescents in Europe: the Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br J Nutr 107, 755764.
68Khor, GL, Chee, WSS, Shariff, ZM, et al. (2011) High prevalence of vitamin D insufficiency and its association with BMI-for-age among primary school children in Kuala Lumpur, Malaysia. BMC Public Health 11, 95102.
69Renzaho, AMN, Halliday, JA & Nowson, C (2011) Vitamin D, obesity, and obesity-related chronic disease among ethnic minorities: a systematic review. Nutrition 27, 868879.
70Poomthavorn, P, Saowan, S, Mahachoklertwattana, P, et al. (2012) Vitamin D status and glucose homeostasis in obese children and adolescents living in the tropics. Int J Obes 36, 491495.

Keywords

SEANUTS: the nutritional status and dietary intakes of 0.5–12-year-old Thai children

  • Nipa Rojroongwasinkul (a1), Kallaya Kijboonchoo (a1), Wanphen Wimonpeerapattana (a1), Sasiumphai Purttiponthanee (a1), Uruwan Yamborisut (a1), Atitada Boonpraderm (a1), Petcharat Kunapan (a1), Wiyada Thasanasuwan (a1) and Ilse Khouw (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed