Skip to main content Accessibility help
×
Home

Reproducibility of data-driven dietary patterns in two groups of adult Spanish women from different studies

  • Adela Castelló (a1) (a2) (a3), Virginia Lope (a1) (a2) (a3), Jesús Vioque (a2) (a4), Carmen Santamariña (a5), Carmen Pedraz-Pingarrón (a6), Soledad Abad (a7), Maria Ederra (a8), Dolores Salas-Trejo (a9), Carmen Vidal (a10), Carmen Sánchez-Contador (a11), Nuria Aragonés (a1) (a2) (a3), Beatriz Pérez-Gómez (a1) (a2) (a3) and Marina Pollán (a1) (a2) (a3)...

Abstract

The objective of the present study was to assess the reproducibility of data-driven dietary patterns in different samples extracted from similar populations. Dietary patterns were extracted by applying principal component analyses to the dietary information collected from a sample of 3550 women recruited from seven screening centres belonging to the Spanish breast cancer (BC) screening network (Determinants of Mammographic Density in Spain (DDM-Spain) study). The resulting patterns were compared with three dietary patterns obtained from a previous Spanish case–control study on female BC (Epidemiological study of the Spanish group for breast cancer research (GEICAM: grupo Español de investigación en cáncer de mama)) using the dietary intake data of 973 healthy participants. The level of agreement between patterns was determined using both the congruence coefficient (CC) between the pattern loadings (considering patterns with a CC≥0·85 as fairly similar) and the linear correlation between patterns scores (considering as fairly similar those patterns with a statistically significant correlation). The conclusions reached with both methods were compared. This is the first study exploring the reproducibility of data-driven patterns from two studies and the first using the CC to determine pattern similarity. We were able to reproduce the EpiGEICAM Western pattern in the DDM-Spain sample (CC=0·90). However, the reproducibility of the Prudent (CC=0·76) and Mediterranean (CC=0·77) patterns was not as good. The linear correlation between pattern scores was statistically significant in all cases, highlighting its arbitrariness for determining pattern similarity. We conclude that the reproducibility of widely prevalent dietary patterns is better than the reproducibility of more population-specific patterns. More methodological studies are needed to establish an objective measurement and threshold to determine pattern similarity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reproducibility of data-driven dietary patterns in two groups of adult Spanish women from different studies
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reproducibility of data-driven dietary patterns in two groups of adult Spanish women from different studies
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reproducibility of data-driven dietary patterns in two groups of adult Spanish women from different studies
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr A. Castelló, fax +34 91 387 7815, email acastello@isciii.es

Footnotes

Hide All

Membership of the DDM-Spain research group is provided in the Acknowledgements section.

Footnotes

References

Hide All
1. Bingham, SA, Luben, R, Welch, A, et al. (2003) Are imprecise methods obscuring a relation between fat and breast cancer? Lancet 362, 212214.
2. Kelemen, LE (2007) GI Epidemiology: nutritional epidemiology. Aliment Pharmacol Ther 25, 401407.
3. Willett, W (2001) Commentary: dietary diaries versus food frequency questionnaires – a case of undigestible data. Int J Epidemiol 30, 317319.
4. Jacobs, DR Jr & Steffen, LM (2003) Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr 78, 508S513S.
5. Messina, M, Lampe, JW, Birt, DF, et al. (2001) Reductionism and the narrowing nutrition perspective: time for reevaluation and emphasis on food synergy. J Am Diet Assoc 101, 14161419.
6. Irala-Estevez, JD, Groth, M, Johansson, L, et al. (2000) A systematic review of socio-economic differences in food habits in Europe: consumption of fruit and vegetables. Eur J Clin Nutr 54, 706714.
7. Sanchez-Villegas, A, Martinez, JA, Prattala, R, et al. (2003) A systematic review of socioeconomic differences in food habits in Europe: consumption of cheese and milk. Eur J Clin Nutr 57, 917929.
8. Teufel, NI (1997) Development of culturally competent food-frequency questionnaires. Am J Clin Nutr 65, 1173S1178S.
9. Barkoukis, H (2007) Importance of understanding food consumption patterns. J Am Diet Assoc 107, 234236.
10. Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
11. Jacques, PF & Tucker, KL (2001) Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr 73, 12.
12. George, SM, Ballard-Barbash, R, Manson, JE, et al. (2014) Comparing indices of diet quality with chronic disease mortality risk in postmenopausal women in the women’s health initiative observational study: evidence to inform national dietary guidance. Am J Epidemiol 180, 616625.
13. Harmon, BE, Boushey, CJ, Shvetsov, YB, et al. (2015) Associations of key diet-quality indexes with mortality in the Multiethnic cohort: the dietary patterns methods project. Am J Clin Nutr 101, 587597.
14. Liese, AD, Krebs-Smith, SM, Subar, AF, et al. (2015) The dietary patterns methods project: synthesis of findings across cohorts and relevance to dietary guidance. J Nutr 145, 393402.
15. McCullough, ML (2014) Diet patterns and mortality: common threads and consistent results. J Nutr 144, 795796.
16. Reedy, J, Krebs-Smith, SM, Miller, PE, et al. (2014) Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J Nutr 144, 881889.
17. Fung, TT, McCullough, ML, Newby, PK, et al. (2005) Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 82, 163173.
18. Martinez, ME, Marshall, JR & Sechrest, L (1998) Invited commentary: factor analysis and the search for objectivity. Am J Epidemiol 148, 1719.
19. Slattery, ML & Boucher, KM (1998) The senior authors’ response: factor analysis as a tool for evaluating eating patterns. Am J Epidemiol 148, 2021.
20. Hu, FB, Rimm, E, Smith-Warner, SA, et al. (1999) Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 69, 243249.
21. Khani, BR, Ye, W, Terry, P, et al. (2004) Reproducibility and validity of major dietary patterns among Swedish women assessed with a food-frequency questionnaire. J Nutr 134, 15411545.
22. Nanri, A, Shimazu, T, Ishihara, J, et al. (2012) Reproducibility and validity of dietary patterns assessed by a food frequency questionnaire used in the 5-year follow-up survey of the Japan Public Health Center-Based Prospective Study. J Epidemiol 22, 205215.
23. Newby, PK, Weismayer, C, Akesson, A, et al. (2006) Long-term stability of food patterns identified by use of factor analysis among Swedish women. J Nutr 136, 626633.
24. Castelló, A, Pollan, M, Buijsse, B, et al. (2014) Spanish Mediterranean diet and other dietary patterns and breast cancer risk: case-control EpiGEICAM study. Br J Cancer 111, 14541462.
25. Lope, V, Perez-Gomez, B, Sanchez-Contador, C, et al. (2012) Obstetric history and mammographic density: a population-based cross-sectional study in Spain (DDM-Spain). Breast Cancer Res Treat 132, 11371146.
26. Pollan, M, Lope, V, Miranda-Garcia, J, et al. (2012) Adult weight gain, fat distribution and mammographic density in Spanish pre- and post-menopausal women (DDM-Spain). Breast Cancer Res Treat 134, 823838.
27. Vioque, J, Navarrete-Munoz, EM, Gimenez-Monzo, D, et al. (2013) Reproducibility and validity of a food frequency questionnaire among pregnant women in a Mediterranean area. Nutr J 12, 26.
28. Willett, WC, Sampson, L, Stampfer, MJ, et al. (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122, 5165.
29. Burt, C (1948) Factor analysis and canonical correlations. Br J Math Stat Psychol 1, 95106.
30. Tucker, LR (1951) A method for the synthesis of factor analysis studies, Personnel Research Section Report no. 984. Washington, DC: Department of the Army.
31. Haven, S & Berge, J (1977) Tucker’s coefficient congruence as a measure of factorial invariance: an empirical study. Heymans Bulletin no. 290 EX. Groningen, The Netherlands: University of Groningen.
32. Lorenzo-Seva, U & Berge, J (2006) Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology 2, 5467.
33. Nesselroade, J & Baltes, P (1970) On a dilemma of comparative factor analysis: a study of factor matching based on random data. Educ Psychol Meas 30, 935948.
34. Schulze, MB, Hoffmann, K, Kroke, A, et al. (2003) An approach to construct simplified measures of dietary patterns from exploratory factor analysis. Br J Nutr 89, 409419.
35. Castello, A, Buijsse, B, Martin, M, et al. (2016) Evaluating the applicability of data-driven dietary patterns to independent samples with focus on measurement tools for pattern similarity. J Acad Nutr Diet (In the Press).
36. Agurs-Collins, T, Rosenberg, L, Makambi, K, et al. (2009) Dietary patterns and breast cancer risk in women participating in the black women’s health study. Am J Clin Nutr 90, 621628.
37. Cottet, V, Touvier, M, Fournier, A, et al. (2009) Postmenopausal breast cancer risk and dietary patterns in the E3N-EPIC prospective cohort study. Am J Epidemiol 170, 12571267.
38. Cui, X, Dai, Q, Tseng, M, et al. (2007) Dietary patterns and breast cancer risk in the Shanghai breast cancer study. Cancer Epidemiol Biomarkers Prev 16, 14431448.
39. Terry, P, Suzuki, R, Hu, FB, et al. (2001) A prospective study of major dietary patterns and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 10, 12811285.
40. Velie, EM, Schairer, C, Flood, A, et al. (2005) Empirically derived dietary patterns and risk of postmenopausal breast cancer in a large prospective cohort study. Am J Clin Nutr 82, 13081319.
41. Wu, AH, Yu, MC, Tseng, CC, et al. (2009) Dietary patterns and breast cancer risk in Asian American women. Am J Clin Nutr 89, 11451154.
42. Adebamowo, CA, Hu, FB, Cho, E, et al. (2005) Dietary patterns and the risk of breast cancer. Ann Epidemiol 15, 789795.
43. Bessaoud, F, Tretarre, B, Daures, JP, et al. (2012) Identification of dietary patterns using two statistical approaches and their association with breast cancer risk: a case-control study in Southern France. Ann Epidemiol 22, 499510.
44. De Stefani, E, Deneo-Pellegrini, H, Boffetta, P, et al. (2009) Dietary patterns and risk of cancer: a factor analysis in Uruguay. Int J Cancer 124, 13911397.
45. Demetriou, CA, Hadjisavvas, A, Loizidou, MA, et al. (2012) The Mediterranean dietary pattern and breast cancer risk in Greek-Cypriot women: a case-control study. BMC Cancer 12, 113.
46. Hirose, K, Matsuo, K, Iwata, H, et al. (2007) Dietary patterns and the risk of breast cancer in Japanese women. Cancer Sci 98, 14311438.
47. Zhang, CX, Ho, SC, Fu, JH, et al. (2011) Dietary patterns and breast cancer risk among Chinese women. Cancer Causes Control 22, 115124.
48. Rencher, A (2002) Principal component analysis. In Methods of Multivariate Analysis, pp. 380407. New York: John Wiley & Sons, Inc.
49. García-Arenzana, N, Navarrete-Munoz, EM, Peris, M, et al. (2012) Diet quality and related factors among Spanish female participants in breast cancer screening programs. Menopause 19, 11211129.

Keywords

Type Description Title
WORD
Supplementary materials

Castelló supplementary material
Castelló supplementary material 1

 Word (46 KB)
46 KB

Reproducibility of data-driven dietary patterns in two groups of adult Spanish women from different studies

  • Adela Castelló (a1) (a2) (a3), Virginia Lope (a1) (a2) (a3), Jesús Vioque (a2) (a4), Carmen Santamariña (a5), Carmen Pedraz-Pingarrón (a6), Soledad Abad (a7), Maria Ederra (a8), Dolores Salas-Trejo (a9), Carmen Vidal (a10), Carmen Sánchez-Contador (a11), Nuria Aragonés (a1) (a2) (a3), Beatriz Pérez-Gómez (a1) (a2) (a3) and Marina Pollán (a1) (a2) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed