Skip to main content Accessibility help
×
Home

Relationship between plasma 25-hydroxyvitamin D and leucocyte telomere length by sex and race in a US study

  • Jason J. Liu (a1), Elizabeth K. Cahoon (a1), Martha S. Linet (a1), Mark P. Little (a1), Casey L. Dagnall (a1) (a2), Herbert Higson (a1) (a2), Sharon A. Savage (a1) and D. Michal Freedman (a1)...
  • Please note a correction has been issued for this article.

Abstract

A few studies have examined the association between vitamin D and telomere length, and fewer still have examined the relationship in black or male populations. We investigated the cross-sectional association between the vitamin D metabolite 25-hydroxyvitamin D (25(OH)D) concentration in plasma and relative leucocyte telomere length (LTL) in 1154 US radiologic technologists who were 48–93 years old (373 white females, 278 white males, 338 black females, 165 black males). Plasma 25(OH)D concentration was measured by the chemiluminescence immunoassay, and relative LTL was measured by quantitative PCR. Logistic regression was used to obtain OR and 95 % CI for long v. short (based on median) LTL in relation to continuous 25(OH)D, quartiles of 25(OH)D and 25(OH)D deficiency. We found no significant association between continuous 25(OH)D and long LTL in all participants (P trend=0·440), nor in white females (P trend=0·845), white males (P trend=0·636), black females (P trend=0·967) or black males (P trend=0·484). Vitamin D deficiency (defined as 25(OH)D<30 nmol/l), however, was significantly associated with short LTL in whites (P=0·024), but not in other groups. In this population, we found little evidence to support associations between 25(OH)D and long LTL over the entire range of 25(OH)D in the overall study population or by sex and race.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Relationship between plasma 25-hydroxyvitamin D and leucocyte telomere length by sex and race in a US study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Relationship between plasma 25-hydroxyvitamin D and leucocyte telomere length by sex and race in a US study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Relationship between plasma 25-hydroxyvitamin D and leucocyte telomere length by sex and race in a US study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: D. M. Freedman, fax +1 240 276 7874, email freedmam@mail.nih.gov

Footnotes

Hide All

These authors contributed equally to this work.

The original version of this article was published with an incorrect spelling in the title. A notice detailing this has been published and the error rectified in the online and print PDF, and HTML copies.

Footnotes

References

Hide All
1. Richards, JB, Valdes, AM, Gardner, JP, et al. (2007) Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J ClinNutr 86, 14201425.
2. Liu, JJ, Prescott, J, Giovannucci, E, et al. (2013) Plasma vitamin D biomarkers and leukocyte telomere length. Am J Epidemiol 177, 14111417.
3. Hoffecker, BM, Raffield, LM, Kamen, DL, et al. (2013) Systemic lupus erythematosus and vitamin D deficiency are associated with shorter telomere length among African Americans: a case-control study. PLOS ONE 8, e63725.
4. Julin, B, Shui, IM, Prescott, J, et al. (2015) Plasma vitamin D biomarkers and leukocyte telomere length in men. Eur J Nutr (epublication ahead of print version 11 November 2015).
5. Holick, MF (2007) Vitamin D deficiency. N Engl J Med 357, 266281.
6. Reichel, H, Koeffler, HP & Norman, AW (1989) The role of the vitamin D endocrine system in health and disease. N Engl J Med 320, 980991.
7. Deeb, KK, Trump, DL & Johnson, CS (2007) Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7, 684700.
8. Zanetti, M, Harris, SS & Dawson-Hughes, B (2014) Ability of vitamin D to reduce inflammation in adults without acute illness. Nutr Rev 72, 9598.
9. Blackburn, EH (1991) Structure and function of telomeres. Nature 350, 569573.
10. Houben, JM, Moonen, HJ, van Schooten, FJ, et al. (2008) Telomere length assessment: biomarker of chronic oxidative stress? Free RadicBiol Med 44, 235246.
11. Pooley, KA, Sandhu, MS, Tyrer, J, et al. (2010) Telomere length in prospective and retrospective cancer case-control studies. Cancer Res 70, 31703176.
12. Bojesen, SE (2013) Telomeres and human health. J Intern Med 274, 399413.
13. Williams, DM, Palaniswamy, S, Sebert, S, et al. (2016) 25-Hydroxyvitamin D concentration and leukocyte telomere length in young adults: findings from the Northern Finland birth cohort 1966. Am J Epidemiol 183, 191198.
14. Boice, JD Jr, Mandel, JS, Doody, MM, et al. (1992) A health survey of radiologic technologists. Cancer 69, 586598.
15. Doody, MM, Mandel, JS, Lubin, JH, et al. (1998) Mortality among United States radiologic technologists, 1926–90. Cancer Causes Control 9, 6775.
16. Freedman, DM, Cahoon, EK, Rajaraman, P, et al. (2013) Sunlight and other determinants of circulating 25-hydroxyvitamin D levels in black and white participants in a nationwide U.S. study. Am J Epidemiol 177, 180192.
17. Cawthon, RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30, e47.
18. Cawthon, RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37, e21.
19. Callicott, RJ & Womack, JE (2006) Real-time PCR assay for measurement of mouse telomeres. Comp Med 56, 1722.
20. Simon, SL, Preston, DL, Linet, MS, et al. (2014) Radiation organ doses received in a nationwide cohort of U.S. radiologic technologists: methods and findings. Radiat Res 182, 507528.
21. Institute of Medicine (2011) Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academies Press.
22. Gardner, M, Bann, D, Wiley, L, et al. (2014) Gender and telomere length: systematic review and meta-analysis. ExpGerontol 51, 1527.
23. Diez Roux, AV, Ranjit, N, Jenny, NS, et al. (2009) Race/ethnicity and telomere length in the multi-ethnic study of atherosclerosis. Aging Cell 8, 251257.
24. Hunt, SC, Chen, W, Gardner, JP, et al. (2008) Leukocyte telomeres are longer in African Americans than in whites: the national heart, lung, and blood institute family heart study and the Bogalusa Heart Study. Aging cell 7, 451458.
25. Srikanth, P, Chun, RF, Hewison, M, et al. (2016) Associations of total and free 25OHD and 1,25(OH)D with serum markers of inflammation in older men. Osteoporos Int (epublication ahead of print version 23 February 2016).
26. Zhang, Y, Leung, DY, Richers, BN, et al. (2012) Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol 188, 21272135.
27. Fitzpatrick, AL, Kronmal, RA, Gardner, JP, et al. (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165, 1421.
28. Steer, SE, Williams, FM, Kato, B, et al. (2007) Reduced telomere length in rheumatoid arthritis is independent of disease activity and duration. Ann Rheum Dis 66, 476480.
29. Valdes, AM, Andrew, T, Gardner, JP, et al. (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366, 662664.

Keywords

Relationship between plasma 25-hydroxyvitamin D and leucocyte telomere length by sex and race in a US study

  • Jason J. Liu (a1), Elizabeth K. Cahoon (a1), Martha S. Linet (a1), Mark P. Little (a1), Casey L. Dagnall (a1) (a2), Herbert Higson (a1) (a2), Sharon A. Savage (a1) and D. Michal Freedman (a1)...
  • Please note a correction has been issued for this article.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: