Skip to main content Accessibility help

A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy

  • Tsz Hong Law (a1) (a2), Emma S. S. Davies (a1), Yuanlong Pan (a3), Brian Zanghi (a3), Elizabeth Want (a2) and Holger A. Volk (a1)...
  • Please note a correction has been issued for this article.


Despite appropriate antiepileptic drug treatment, approximately one-third of humans and dogs with epilepsy continue experiencing seizures, emphasising the importance for new treatment strategies to improve the quality of life of people or dogs with epilepsy. A 6-month prospective, randomised, double-blinded, placebo-controlled cross-over dietary trial was designed to compare a ketogenic medium-chain TAG diet (MCTD) with a standardised placebo diet in chronically antiepileptic drug-treated dogs with idiopathic epilepsy. Dogs were fed either MCTD or placebo diet for 3 months followed by a subsequent respective switch of diet for a further 3 months. Seizure frequency, clinical and laboratory data were collected and evaluated for twenty-one dogs completing the study. Seizure frequency was significantly lower when dogs were fed the MCTD (2·31/month, 0–9·89/month) in comparison with the placebo diet (2·67/month, 0·33–22·92/month, P=0·020); three dogs achieved seizure freedom, seven additional dogs had ≥50 % reduction in seizure frequency, five had an overall <50 % reduction in seizures (38·87 %, 35·68–43·27 %) and six showed no response. Seizure day frequency were also significantly lower when dogs were fed the MCTD (1·63/month, 0–7·58/month) in comparison with the placebo diet (1·69/month, 0·33–13·82/month, P=0·022). Consumption of the MCTD also resulted in significant elevation of blood β-hydroxybutyrate concentrations in comparison with placebo diet (0·041 (sd 0·004) v. 0·031 (sd 0·016) mmol/l, P=0·028). There were no significant changes in serum concentrations of glucose (P=0·903), phenobarbital (P=0·422), potassium bromide (P=0·404) and weight (P=0·300) between diet groups. In conclusion, the data show antiepileptic properties associated with ketogenic diets and provide evidence for the efficacy of the MCTD used in this study as a therapeutic option for epilepsy treatment.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A randomised trial of a medium-chain TAG diet as treatment for dogs with idiopathic epilepsy
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: H. A. Volk, fax +44 170 764 9384, email:


Hide All
1. Schwartz-Porsche, D (1986) Epidemiological, clinical and pharmacokinetic studies in spontaneously epileptic dogs and cats. ACVIM 4, 11611163.
2. Kearsley-Fleet, L, O’Neill, DG, Volk, HA, et al. (2013) Prevalence and risk factors for canine epilepsy of unknown origin in the UK. Vet Rec 172, 338.
3. Casal, ML, Munuve, RM, Janis, MA, et al. (2006) Epilepsy in Irish Wolfhounds. J Vet Intern Med 20, 131135.
4. Berendt, M, Gulløv, CH & Fredholm, M (2009) Focal epilepsy in the Belgian shepherd: evidence for simple Mendelian inheritance. J Small Anim Pract 50, 655661.
5. Engel, JJ & Pedley, TA (1997) Introduction. What is epilepsy? In Epilepsy: A Comprehensive Textbook (Vol 1), pp. 110. New York: Lipponcott-Raven.
6. Kwan, P, Schachter, SC & Brodie, MJ (2011) Drug-resistant epilepsy. N Engl J Med 365, 919926.
7. Zweiri, MA, Sills, GJ, Leach, JP, et al. (2010) Response to drug treatment in newly diagnosed epilepsy: a pilot study of 1H NMR- and MS-based metabonomic analysis. Epilepsy Res 88, 189195.
8. Hitiris, N, Mohanraj, R, Norrie, J, et al. (2007) Predictors of pharmacoresistant epilepsy. Epilepsy Res 75, 192196.
9. Löscher, W (1997) Animal models of intractable epilepsy. Prog Neurobiol 53, 239258.
10. Volk, HA, Matiasek, LA, Feliu-Pascual, LA, et al. (2008) The efficacy and tolerability of levetiracetam in pharmacoresistant epileptic dogs. Vet J 176, 310319.
11. Thomas, WB (2010) Idiopathic epilepsy in dogs and cats. Vet Clin N Am Small Anim Pract 40, 161179.
12. Dewey, CW (2006) Anticonvulsant therapy in dogs and cats. Vet Clin N Am Small Anim Pract 36, 11071127.
13. Thigpen, J, Miller, SE & Pond, BB (2013) Behavioural side effects of antiepileptic drugs. US Pharm 38, HS15HS20.
14. Lowrie, M (2012) Advances in the management of idiopathic epilepsy in dogs. Companion Animals 1, 7788.
15. Martlé, V, Ham, LV, Raedt, R, et al. (2013) Non-pharmacological treatment options for refractory epilepsy: An overview of human treatment modalities and their potential utility in dogs. Vet J 199, 332339.
16. Wilder, RM (1921) The effects of ketonemia on the course of epilepsy. Mayo Clin Proc 2, 307308.
17. Geyelin, HR (1921) Fasting as a method of treating epilepsy. Med Rec 99, 10371039.
18. Neal, EG, Chaffe, H, Schwartz, RH, et al. (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7, 500506.
19. Schwartz, RH, Eaton, J, Bower, BD, et al. (1989) Ketogenic diets in the treatment of epilepsy: short-term clinical effects. Dev Med Child Neurol 3, 145151.
20. Vining, EPG, Freeman, JM, Ballaban-Gil, K, et al. (1998) A multicenter study of the efficacy of the ketogenic diet. Arch Neurol 55, 14331437.
21. Thavendiranathan, P, Chow, C, Cunnane, S, et al. (2003) The effect of the ‘classic’ ketogenic diet on animal seizure models. Brain Res 959, 206213.
22. Suo, C, Liao, J, Lu, X, et al. (2013) Efficacy and safety of the ketogenic diet in Chinese children. Seizure 22, 174178.
23. Kossoff, EH, McGrogan, JR, Bluml, RM, et al. (2006) A modified atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia 2, 421424.
24. Huttenlocher, PR, Wilbourn, AJ & Signore, JM (1971) Medium-chain triglycerides as a therapy for intractable childhood epilepsy. Neurology 21, 10971103.
25. Neal, EG, Chaffe, H, Schwartz, RH, et al. (2009) A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia 50, 11091117.
26. Pfeifer, HH & Thiele, EA (2005) Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology 65, 18101812.
27. Yuen, AWC & Sander, JW (2014) Rationale for using intermittent calorie restriction as a dietary treatment for drug resistant epilepsy. Epilepsy Behav 33, 110114.
28. Sills, MA, Forsythe, WI, Haidukewych, D, et al. (1986) The medium chain triglyceride diet and intractable epilepsy. Arch Dis Child 61, 11681172.
29. Puchowicz, MA, Smith, CL, Bomont, C, et al. (2000) Dog model of therapeutic ketosis induced by oral administration of R,S-1,3-butanediol diacetoacetate. J Nutr Biochem 11, 281287.
30. Kelley, SA & Hartman, AL (2011) Metabolic treatments for intractable epilepsy. Semin Pediatr Neurol 18, 179185.
31. Liu, YMC (2008) Medium chain triglyceride (MCT) ketogenic therapy. Epilepsia 49, Suppl. 8, 3336.
32. Trauner, DA (1985) Medium-chain triglyceride (MCT) diet in intractable seizure disorders. Neurology 35, 237238.
33. Pan, Y, Larson, B, Araujo, JA, et al. (2010) Dietary supplementation with medium-chain TAG has long lasting cognition-enhancing effects in aged dogs. Br J Nutr 103, 17461754.
34. Licht, BG, Licht, MH, Harper, KM, et al. (2002) Clinical presentations of naturally occurring canine seizures: similarities to human seizures. Epilepsy Behav 3, 460470.
35. Potschka, H, Fischer, A, Rüden, VEL, et al. (2013) Canine epilepsy as a translational model? Epilepsia 54, 571579.
36. Patterson, EE, Muñana, KK, Kirk, CA, et al. (2005) Results of a ketogenic food trial for dogs with idiopathic epilepsy. J Vet Intern Med 1, 421.
37. Giordano, C, Marchiò, M, Timofeeva, E, et al. (2014) Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 5, 63.
38. Masino, SA & Rho, JM (2012) Mechanisms of ketogenic diet action. In Jasper’s Basic Mechanisms of the Epilepsies, 4th ed. pp. 10011022 [JL Noebels, M Avoli and MA Rogawski, editors]. Bethesda, MD: National Center of Biotechnology Information (US).
39. Rho, JM & Sankar, R (2008) The ketogenic diet in a pill: is this possible? Epilepsia 49, Suppl. 8, 127133.
40. Bough, KJ & Rho, JM (2007) Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 48, 1, 4358.
41. Coppola, G, Verrotti, A, D’Aniello, A, et al. (2010) Valporic acid and phenobarbital blood levels during the first month of treatment with the ketogenic diet. Acta Neurol Scand 122, 303307.
42. Dahlin, MG, Beck, OML & Åmark, PE (2006) Plasma levels of antiepileptic drugs in children on the ketogenic diet. Neurol 35, 610.
43. McNally, MA & Hartman, AL (2012) Ketone bodies in epilepsy. J. Neurochem 121, 2835.
44. Gilbert, DL, Pyzik, PL & Freeman, JM (2000) The ketogenic diet: seizure control correlates with serum β-hydroxybutyrate than with urine ketosis. J Child Neurol 15, 787790.
45. Keith, H (1935) Experimental convulsions induced by administration of thujone. Arch NeurPsych 34, 10221040.
46. Rho, JM, Anderson, GD, Donevan, SD, et al. (2002) Acetoacetate, acetone, and dibenzylamine (a contaminant in l-(+)- beta-hydroxybutyrate) exhibit direct anticonvulsant actions in vivo . Epilepsia 43, 358361.
47. Likhodii, SS, Serbanescu, I, Cortez, MA, et al. (2003) Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann Neurol. 54, 219226.
48. Gasior, M, French, A, Joy, MT, et al. (2007) The anticonvulsant activity of acetone, the major ketone body in the ketogenic diet, is not dependent on its metabolites acetol, 1,2-propanediol, methylglyoxal, or pyruvic acid. Epilepsia 48, 793800.
49. Greene, A, Todorova, MT & Seyfried, TN (2003) Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 86, 529537.
50. Piotr, W, Socała, K, Nieoczym, D, et al. (2012) Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology 62, 18821889.
51. Piotr, W, Socała, K, Nieoczym, D, et al. (2015) Acute anticonvulsant effects of capric acid in seizure tests in mice. Prog Neuropsychopharmacol Biol Psychiatry 57, 110116.
52. Chang, P, Terback, N, Plant, N, et al. (2013) Seizure control by ketogenic diet-associated medium chain fatty acids. Neuropharmacology 69, 105114.
53. Chang, P, Orabi, B, Deranieh, RM, et al. (2012) The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyistelium . Dis Model Mech 5, 115124.
54. Chang, P, Walker, M & Williams, RSB (2014) Seizure-induced reduction in PIP3 levels contributes to seizure activity and is rescued by valporic acid. Neurobiol Dis 62, 296306.
55. Chang, P, Zuckerman, AME, Williams, S, et al. (2015) Seizure Control by Derivatives of medium chain fatty acids associated with the ketogenic diet show novel branching-point structure for enhanced potency. J Pharmacol Exp Ther 352, 4352.
56. Muñana, KR, Zhang, D & Patterson, EE (2010) Placebo effect in canine epilepsy trials. J Vet Intern Med 24, 166170.


Type Description Title
Supplementary materials

Law supplementary material
Tables S1-S5

 Word (77 KB)
77 KB
Supplementary materials

Law supplementary material
Figure S1

 Unknown (287 KB)
287 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: