Skip to main content Accessibility help
×
Home

Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication

  • Dong Eun Lee (a1) (a2), Bong Jik Shin (a1), Haeng Jeon Hur (a1), Jong Hun Kim (a2), Jiyoung Kim (a1) (a2), Nam Joo Kang (a1) (a2) (a3), Dae Ok Kim (a4), Chang Yong Lee (a5), Ki Won Lee (a2) and Hyong Joo Lee (a1)...

Abstract

We evaluated the effects of the two main kiwifruit cultivars (gold kiwifruit (GOK) and green kiwifruit (GRK)) and their active phenolic compound, quercetin, on H2O2-induced inhibition of gap-junction intercellular communication (GJIC) in WB-F344 rat liver epithelial cells. We found that both GOK and GRK protect WB-F344 cells from H2O2-induced inhibition of GJIC. The extracellular signal-regulated protein kinase 1/2 (ERK1/2)–connexin 43 (Cx43) signalling pathway is crucial for the regulation of GJIC, and both GOK and GRK blocked the H2O2-induced phosphorylation of Cx43 and ERK1/2 in WB-F344 cells. Quercetin alone attenuated the H2O2-mediated ERK1/2–Cx43 signalling pathway and consequently reversed H2O2-mediated inhibition of GJIC in WB-F344 cells. A free radical-scavenging assay using 1,1-diphenyl-2-picrylhydrazyl showed that the scavenging activity of quercetin was higher than that of a synthetic antioxidant, butylated hydroxytoluene, per mol, suggesting that the chemopreventive effect of quercetin on H2O2-mediated inhibition of ERK1/2–Cx43 signalling and GJIC may be mediated through its free radical-scavenging activity. Since the carcinogenicity of reactive oxygen species such as H2O2 is attributable to the inhibition of GJIC, GOK, GRK and quercetin may have chemopreventive potential by preventing the inhibition of GJIC.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Hyong Joo Lee, fax +82 2 873 5095, email leehyjo@snu.ac.kr; Dr Ki Won Lee, fax +82 2 3436 6178, email kiwon@konkuk.ac.kr

References

Hide All
1Kumar, MN & Gilula, NB (1996) The gap junction communication channel. Cell 84, 381388.
2King, TJ & Bertram, JS (2005) Connexins as targets for cancer chemoprevention and chemotherapy. Biochim Biophys Acta 1719, 146160.
3Trosko, JE (1987) Mechanisms of tumor promotion: possible role of inhibited intercellular communication. Eur J Cancer Clin Oncol 23, 599601.
4Trosko, JE & Ruch, RJ (1998) Cell–cell communication in carcinogenesis. Front Biosci 3, d208d236.
5Kang, KS, Yun, JW, Yoon, B, et al. (2001) Preventive effect of germanium dioxide on the inhibition of gap junctional intercellular communication by TPA. Cancer Lett 166, 147153.
6Sai, K, Kang, KS, Hirose, A, et al. (2001) Inhibition of apoptosis by pentachlorophenol in v-myc-transfected rat liver epithelial cells: relation to down-regulation of gap junctional intercellular communication. Cancer Lett 173, 163174.
7Kang, KS, Lee, YS, Kim, HS, et al. (2002) DI-(2-ethylhexyl) phthalate-induced cell proliferation is involved in the inhibition of gap junctional intercellular communication and blockage of apoptosis in mouse Sertoli cells. J Toxicol Environ Health A 65, 447459.
8Solan, JL & Lampe, PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419, 261272.
9Birt, DF, Hendrich, S & Wang, W (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90, 157177.
10Surh, YJ (2002) Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem Toxicol 40, 10911097.
11Lee, KW, Lee, HJ, Surh, YJ, et al. (2003) Vitamin C and cancer chemoprevention: reappraisal. Am J Clin Nutr 78, 10741078.
12Collins, BH, Horska, A, Hotten, PM, et al. (2001) Kiwifruit protects against oxidative DNA damage in human cells and in vitro. Nutr Cancer 39, 148153.
13Motohashi, N, Shirataki, Y, Kawase, M, et al. (2002) Cancer prevention and therapy with kiwifruit in Chinese folklore medicine: a study of kiwifruit extracts. J Ethnopharmacol 81, 357364.
14Motohashi, N, Shirataki, Y, Kawase, M, et al. (2001) Biological activity of kiwifruit peel extracts. Phytotherapy Research 15, 337343.
15Collins, AR, Harrington, V, Drew, J, et al. (2003) Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis 24, 511515.
16Song, P (1984) Healthy application by kiwifruit juice. Nutr Res 6, 3540.
17Song, P (1984) Anticancer activity of Chinese kiwifruit. Nutr Res 6, 109114.
18Imeh, U & Khokhar, S (2002) Distribution of conjugated and free phenols in fruits: antioxidant activity and cultivar variations. J Agric Food Chem 50, 63016306.
19Fuke, Y & Matsuoka, H (1984) Changes in content of pectic substances, ascorbic acid and polyphenols, and activity of pectinesterase in kiwi fruit during growth and ripening after harvest. Japan J Food Sci Technol 31, 3137.
20Dawes, HM & Keene, JB (1999) Phenolic composition of kiwifruit juice. J Agric Food Chem 47, 23982403.
21Fiorentino, A, D'Abrosca, B, Pacifico, S, et al. (2009) Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. J Agric Food Chem 57, 41484155.
22Watjen, W, Michels, G, Steffan, B, et al. (2005) Low concentrations of flavonoids are protective in rat H4IIE cells whereas high concentrations cause DNA damage and apoptosis. J Nutr 135, 525531.
23Deschner, EE, Ruperto, JF, Wong, GY, et al. (1993) The effect of dietary quercetin and rutin on AOM-induced acute colonic epithelial abnormalities in mice fed a high-fat diet. Nutr Cancer 20, 199204.
24Sánchez-Pérez, Y, Carrasco-Legleu, C, García-Cuellar, C, et al. (2005) Oxidative stress in carcinogenesis. Correlation between lipid peroxidation and induction of preneoplastic lesions in rat hepatocarcinogenesis. Cancer Lett 217, 2532.
25Huang, RP, Peng, A, Golard, A, et al. (2001) Hydrogen peroxide promotes transformation of rat liver non-neoplastic epithelial cells through activation of epidermal growth factor receptor. Mol Carcinog 30, 209217.
26Cho, JH, Cho, SD, Hu, H, et al. (2002) The roles of ERK1/2 and p38 MAP kinases in the preventive mechanisms of mushroom Phellinus linteus against the inhibition of gap junctional intercellular communication by hydrogen peroxide. Carcinogenesis 23, 11631169.
27Upham, B, Kang, K, Cho, H, et al. (1997) Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis 18, 3742.
28Shi, GP, Li, Y, Wang, QY, et al. (2001) Role of hydrogen peroxide in promoting proliferation and transformation of rat liver oval cell line WB-F344 (article in Chinese). Zhongguo Yi Xue Ke Xue Yuan Xue Bao 23, 346350.
29Kang, KS, Kang, BC, Lee, BJ, et al. (2000) Preventive effect of epicatechin and ginsenoside Rb2 on the inhibition of gap junctional intercellular communication by TPA and H2O2. Cancer Lett 152, 97106.
30Brand-Williams, W, Cuvelier, ME & Berset, C (1995) Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci Technol 28, 2530.
31Lee, KW, Kim, YJ, Lee, HJ, et al. (2003) Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 51, 72927295.
32Surh, YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3, 768780.
33Na, HK, Wilson, MR, Kang, KS, et al. (2000) Restoration of gap junctional intercellular communication by caffeic acid phenethyl ester (CAPE) in a ras-transformed rat liver epithelial cell line. Cancer Lett 157, 3138.
34Bruzzone, R, White, TW & Paul, DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238, 127.
35Ruch, RJ, Trosko, JE & Madhukar, BV (2001) Inhibition of connexin43 gap junctional intercellular communication by TPA requires ERK activation. J Cellular Biochem 83, 163169.
36Lee, KM, Kwon, JY, Lee, KW, et al. (2009) Ascorbic acid 6-palmitate suppresses gap-junctional intercellular communication through phosphorylation of connexin 43 via activation of the MEK-ERK pathway. Mutat Res 660, 5156.
37Hwang, J-W, Park, J-S, Jo, E-H, et al. (2005) Chinese cabbage extracts and sulforaphane can protect H2O2-induced inhibition of gap junctional intercellular communication through the inactivation of ERK1/2 and p38 MAP kinases. J Agric Food Chem 53, 82058210.
38Wang, H, Cao, G & Prior, RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 701705.
39Ko, SH, Choi, SW, Ye, SK, et al. (2005) Comparison of the antioxidant activities of nine different fruits in human plasma. J Med Food 8, 4146.

Keywords

Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication

  • Dong Eun Lee (a1) (a2), Bong Jik Shin (a1), Haeng Jeon Hur (a1), Jong Hun Kim (a2), Jiyoung Kim (a1) (a2), Nam Joo Kang (a1) (a2) (a3), Dae Ok Kim (a4), Chang Yong Lee (a5), Ki Won Lee (a2) and Hyong Joo Lee (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed