Skip to main content Accessibility help
×
Home

Polymannuronic acid ameliorated obesity and inflammation associated with a high-fat and high-sucrose diet by modulating the gut microbiome in a murine model

  • Fang Liu (a1), Xiong Wang (a1), Hongjie Shi (a1), Yuming Wang (a1), Changhu Xue (a1) and Qing-Juan Tang (a1)...

Abstract

Polymannuronic acid (PM), one of numerous alginates isolated from brown seaweeds, is known to possess antioxidant activities. In this study, we examined its potential role in reducing body weight gain and attenuating inflammation induced by a high-fat and high-sucrose diet (HFD) as well as its effect on modulating the gut microbiome in mice. A 30-d PM treatment significantly reduced the diet-induced body weight gain and blood TAG levels (P<0·05) and improved glucose tolerance in male C57BL/6J mice. PM decreased lipopolysaccharides in blood and ameliorated local inflammation in the colon and the epididymal adipose tissue. Compared with low-fat and low-sucrose diet (LFD), HFD significantly reduced the mean number of species-level operational taxonomic units (OTU) per sample as well as species richness (P<0·05) but did not appear to affect other microbial diversity indices. Moreover, compared with LFD, HFD altered the abundance of approximately 23 % of the OTU detected (log10 linear discriminant analysis (LDA) score>2·0). PM also had a profound impact on the microbial composition in the gut microbiome and resulted in a distinct microbiome structure. For example, PM significantly increased the abundance of a probiotic bacterium, Lactobacillus reuteri (log10 LDA score>2·0). Together, our results suggest that PM may exert its immunoregulatory effects by enhancing proliferation of several species with probiotic activities while repressing the abundance of the microbial taxa that harbor potential pathogens. Our findings should facilitate mechanistic studies on PM as a potential bioactive compound to alleviate obesity and the metabolic syndrome.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Polymannuronic acid ameliorated obesity and inflammation associated with a high-fat and high-sucrose diet by modulating the gut microbiome in a murine model
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Polymannuronic acid ameliorated obesity and inflammation associated with a high-fat and high-sucrose diet by modulating the gut microbiome in a murine model
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Polymannuronic acid ameliorated obesity and inflammation associated with a high-fat and high-sucrose diet by modulating the gut microbiome in a murine model
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Q.-J. Tang, email tangqingjuan@ouc.edu.cn

References

Hide All
1. Han, TS & Lean, ME (2016) A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc Dis 5, 2048004016633371.
2. Delzenne, NM, Neyrinck, AM & Cani, PD (2011) Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microb Cell Fact 10, Suppl. 1, S10.
3. Zhao, L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11, 639647.
4. Ley, RE, Backhed, F, Turnbaugh, P, et al. (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 1107011075.
5. Remely, M, Tesar, I, Hippe, B, et al. (2015) Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef Microbes 6, 431439.
6. Everard, A, Belzer, C, Geurts, L, et al. (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110, 90669071.
7. Sun, J, Qiao, Y, Qi, C, et al. (2016) High-fat-diet-induced obesity is associated with decreased antiinflammatory Lactobacillus reuteri sensitive to oxidative stress in mouse Peyer’s patches. Nutrition 32, 265272.
8. Moya-Perez, A, Neef, A & Sanz, Y (2015) Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity-associated inflammation by restoring the lymphocyte-macrophage balance and gut microbiota structure in high-fat diet-fed mice. PLOS ONE 10, e0126976.
9. Saha, S, Rajpal, DK & Brown, JR (2016) Human microbial metabolites as a source of new drugs. Drug Discov Today 21, 692698.
10. Baranova, IN, Souza, AC, Bocharov, AV, et al. (2016) Human SR-BI and SR-BII potentiate lipopolysaccharide-induced inflammation and acute liver and kidney injury in mice. J Immunol 196, 31353147.
11. Cani, PD, Amar, J, Iglesias, MA, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 17611772.
12. Canfora, EE, Jocken, JW & Blaak, EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11, 577591.
13. Li, CJ & Li, RW (2008) Butyrate induced cell cycle arrest in bovine cells through targeting gene expression relevant to DNA replication apparatus. Gene Regul Syst Bio 2, 113123.
14. Li, CJ, Li, RW, Baldwin, RL, et al. (2016) Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification. Gene Regul Syst Bio 10, 18.
15. Gibson, GR, Probert, HM, Loo, JV, et al. (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17, 259275.
16. Yang, J, Bindels, LB, Segura Munoz, RR, et al. (2016) Disparate metabolic responses in mice fed a high-fat diet supplemented with maize-derived non-digestible feruloylated oligo- and polysaccharides are linked to changes in the gut microbiota. PLOS ONE 11, e0146144.
17. Corrigan, A, Horgan, K, Clipson, N, et al. (2012) Effect of dietary prebiotic (mannan oligosaccharide) supplementation on the caecal bacterial community structure of turkeys. Microb Ecol 64, 826836.
18. Chen, HL, Cheng, HC, Wu, WT, et al. (2008) Supplementation of konjac glucomannan into a low-fiber Chinese diet promoted bowel movement and improved colonic ecology in constipated adults: a placebo-controlled, diet-controlled trial. J Am Coll Nutr 27, 102108.
19. Keithley, J & Swanson, B (2005) Glucomannan and obesity: a critical review. Altern Ther Health Med 11, 3034.
20. Senni, K, Pereira, J, Gueniche, F, et al. (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9, 16641681.
21. Ueno, M, Hiroki, T, Takeshita, S, et al. (2012) Comparative study on antioxidative and macrophage-stimulating activities of polyguluronic acid (PG) and polymannuronic acid (PM) prepared from alginate. Carbohydr Res 352, 8893.
22. Campodonico, VL, Llosa, NJ, Bentancor, LV, et al. (2011) Efficacy of a conjugate vaccine containing polymannuronic acid and flagellin against experimental Pseudomonas aeruginosa lung infection in mice. Infect Immun 79, 34553464.
23. David, LA, Maurice, CF, Carmody, RN, et al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559563.
24. Zuo, T, Cao, L, Sun, X, et al. (2014) Dietary squid ink polysaccharide could enhance SIgA secretion in chemotherapeutic mice. Food Funct 5, 31893196.
25. Magoc, T & Salzberg, SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 29572963.
26. Edgar, RC, Haas, BJ, Clemente, JC, et al. (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 21942200.
27. Edgar, RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10, 996998.
28. DeSantis, TZ, Hugenholtz, P, Larsen, N, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72, 50695072.
29. Caporaso, JG, Kuczynski, J, Stombaugh, J, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335336.
30. Segata, N, Izard, J, Waldron, L, et al. (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12, R60.
31. Zhang, H, DiBaise, JK, Zuccolo, A, et al. (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106, 23652370.
32. Cani, PD & Delzenne, NM (2007) Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care 10, 729734.
33. Tilg, H & Kaser, A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121, 21262132.
34. Turnbaugh, PJ, Backhed, F, Fulton, L, et al. (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213223.
35. Schwiertz, A, Taras, D, Schafer, K, et al. (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18, 190195.
36. Machiels, K, Joossens, M, Sabino, J, et al. (2014) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 12751283.
37. Xu, H, Barnes, GT, Yang, Q, et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 18211830.
38. Rainone, V, Schneider, L, Saulle, I, et al. (2016) Upregulation of inflammasome activity and increased gut permeability are associated with obesity in children and adolescents. Int J Obes (Lond) 40, 10261033.
39. Yang, PJ, Yang, WS, Nien, HC, et al. (2015) Duodenojejunal bypass leads to altered gut microbiota and strengthened epithelial barriers in rats. Obes Surg 26, 15761583.
40. den Besten, G, Bleeker, A, Gerding, A, et al. (2015) Short-chain fatty acids protect against high-Fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64, 23982408.
41. De Vadder, F, Kovatcheva-Datchary, P, Goncalves, D, et al. (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 8496.
42. Wu, S, Li, C, Huang, W, et al. (2012) Alternative splicing regulated by butyrate in bovine epithelial cells. PLOS ONE 7, e39182.
43. Fukuda, S, Toh, H, Hase, K, et al. (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543547.
44. Lin, HV, Frassetto, A, Kowalik, EJ Jr, et al. (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLOS ONE 7, e35240.
45. Barcenilla, A, Pryde, SE, Martin, JC, et al. (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66, 16541661.
46. Ze, X, Duncan, SH, Louis, P, et al. (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6, 15351543.
47. Sasajima, N, Ogasawara, T, Takemura, N, et al. (2010) Role of intestinal Bifidobacterium pseudolongum in dietary fructo-oligosaccharide inhibition of 2,4-dinitrofluorobenzene-induced contact hypersensitivity in mice. Br J Nutr 103, 539548.

Keywords

Type Description Title
EXCEL
Supplementary materials

Liu supplementary material
Liu supplementary material 1

 Excel (70 KB)
70 KB
WORD
Supplementary materials

Liu supplementary material
Liu supplementary material 2

 Word (286 KB)
286 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed