Skip to main content Accessibility help
×
Home

Platelet aggregation, eicosanoid production and thrombogenic ratio in individuals at high cardiovascular risk consuming meat enriched in walnut paste. A crossover, placebo-controlled study

  • Amaia Canales (a1), Sara Bastida (a1), Josana Librelottto (a1), Meritxell Nus (a1), Francisco J. Sánchez-Muniz (a1) and Juana Benedi (a2)...

Abstract

Walnut consumption produces beneficial cardiovascular effects. The aim of the present study is to compare the effects of meat enriched in walnut paste (WM) and low-fat meat (LM) consumptions on platelet aggregation, plasma thromboxane A2 (TXA2, measured as TXB2), prostacyclin I2 (PGI2, as 6-keto-PGF) and the thrombogenic ratio (TXB2/6-keto-PGF) in volunteers at high CVD risk. Twenty-two adults were placed on a random, non-blinded crossover study involving two test periods (five portions WM/week for 5 week; five portions LM/week for 5 week) separated by a 4- to 6-week washout period. The participants were asked to complete a diet record throughout the study. Platelet aggregation, plasma TXB2, 6-keto-PGF production and the TXB2/6-keto-PGF1α ratio were determined at baseline and at weeks 3 and 5 for the two dietary periods. The WM diet contains a lower SFA content, a higher concentration of PUFA and a more favourable n-6/n-3 ratio than the LM diet. Significant time × treatment interactions were observed for TXB2 (P = 0·048) and the TXB2/6-keto-PGF1α ratio (P = 0·028). The WM diet significantly increased the level of 6-keto-PGF1α (P = 0·037) and decreased the TXB2/6-keto-PGF1α ratio (P = 0·048). At week 5, significant differences (P < 0·05) between treatments were found for maximum aggregation rate, TXB2 values and the TXB2/6-keto-PGF1α ratio. The effects on TXB2 and the TXB2/6-keto-PGF1α ratio were time-course dependent (P = 0·019 and 0·011, respectively). The WM and LM diets reduced TXB2 levels most (P = 0·050) in obese individuals, while the TXB2/6-keto-PGF1α ratio decreased most (P = 0·066) in volunteers whose serum cholesterol levels were ≥ 2200 mg/l. The WM diet should be considered a functional meat because it improves the thrombogenic status mainly in individuals with high-cholesterol levels or high BMI.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Platelet aggregation, eicosanoid production and thrombogenic ratio in individuals at high cardiovascular risk consuming meat enriched in walnut paste. A crossover, placebo-controlled study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Platelet aggregation, eicosanoid production and thrombogenic ratio in individuals at high cardiovascular risk consuming meat enriched in walnut paste. A crossover, placebo-controlled study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Platelet aggregation, eicosanoid production and thrombogenic ratio in individuals at high cardiovascular risk consuming meat enriched in walnut paste. A crossover, placebo-controlled study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Francisco J. Sánchez-Muniz, fax +34 91 3941810, email frasan@farm.ucm.es

References

Hide All
1Knapp, HR (1997) Dietary fatty acids in human thrombosis and haemostasis. Am J Clin Nutr 65, 1687S1698S.
2Kwon, JS, Snook, JT, Wardlow, GM, et al. (1991) Effects of diets high in saturated fatty acids, canola oil, or safflower oil on platelet function, thromboxane B2 formation, and fatty acid composition of platelet phospholipids. Am J Clin Nutr 54, 341348.
3Thijssen, MA, Hornstra, G & Mensink, RP (2005) Stearic, oleic, and linoleic acids have comparable effects on markers of thrombotic tendency in healthy human subjects. J Nutr 135, 28052811.
4Sinclair, HM (1956) Deficiency of essential fatty acids and atherosclerosis, etcetera. Lancet 270, 381383.
5Lee, J & Hwang, DH (2007) Dietary fatty acids and eicosanoids. In Fatty Acids in Foods and Their Implications, 3rd ed., pp. 715726Boca Raton, FL: CRC Press.
6Hornstra, G (1989) Effect of dietary lipids on platelet function and thrombosis. Ann Med 21, 5357.
7Hornstra, G (1989) Dietary lipids, platelet function and arterial thrombosis. Wien Klin Wochenschr 101, 272277.
8Harris, WS, Miller, M, Tighe, AP, et al. (2008) Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis 197, 1224.
9Chan, JK, McDonald, BE, Gerrard, JM, et al. (1993) Effect of dietary alpha-linolenic acid and its ratio to linoleic acid on platelet and plasma fatty acids and thrombogenesis. Lipids 28, 811817.
10Sánchez-Muniz, FJ, Oubiña, P, Benedí, J, et al. (1998) Preliminary study platelet aggregation in postmenopausal women consuming extra virgin olive oil and high oleic acid sunflower oil. J Am Oil Chem Soc 75, 217223.
11Oubiña, P, Sanchez-Muniz, FJ, Ródenas, S, et al. (2001) Eicosanoid production, thrombogenic ratio, and serum and LDL-peroxides in normo and hypercholesterolaemic post-menopausal women consuming two oleic acid-rich diets with different content of minor components. Br J Nutr 85, 4147.
12Sánchez-Muniz, FJ, Oubiña, P, Ródenas, S, et al. (2003) Platelet aggregation, thromboxane production and thrombogenic ratio in postmenopausal women consuming high oleic acid-sunflower oil or palmolein. Eur J Nutr 42, 299306.
13Miller, GJ (1993) Hyperlipidaemia and hypercoagulability. Prog Lipid Res 32, 6169.
14Gebauer, SK, Psota, TL & Harris, WS (2006) n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83, 6 Suppl., 1526S1535S.
15Nus, M, Ruperto, M & Sánchez-Muniz, FJ (2004) Nuts, cardio and cerebrovascular risks. A Spanish perspective. Arch Latinoam Nutr 54, 137148.
16Tapsell, LC, Gillen, LJ, Patch, CS, et al. (2004) Including walnuts in a low-fat/modified-fat diet improves HDL cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care 27, 27772783.
17Anderson, KJ, Teuber, SS, Gobeille, A, et al. (2001) Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J Nutr 13, 28372842.
18Almario, RU, Vonghavaravat, V, Wong, R, et al. (2001) Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am J Clin Nutr 74, 7279.
19Iwamoto, M, Imaizumi, K, Sato, M, et al. (2002) Serum lipid profiles in Japanese women and men during consumption of walnuts. Eur J Clin Nutr 56, 629637.
20Feldman, EB (2002) The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. J Nutr 132, S1062S1101.
21Ros, E, Nunez, I, Pérez-Heras, A, et al. (2004) A walnut diet improves endothelial function in hypercholesterolemic subjects: a randomized crossover trial. Circulation 109, 16091614.
22Sabate, J (1999) Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. Am J Clin Nutr 70, 500S503S.
23US Food and Drug Administration Office of Nutritional Products, Labelling and Dietary Supplements (2004) Qualified Health Claims: Letter of Enforcement Discretion – Walnuts and Coronary Heart Disease. http://www.cfsan.fda.gov/~dms/qhcnuts3.html (accessed 28 October 2004).
24National Heart, Lung and Blood Institute (2004) ATP 3 Cholesterol Guidelines. http://www.nhlbi.nih.gov/guidelines/cholesterol (accessed 28 October 2005).
25Aranceta Bartrina, J, Pérez Rodrigo, C, Ruiz Vadillo, V, et al. (2005) Consumo de frutos secos en España y en Europa. In Frutos secos, salud y culturas Mediterráneas, pp. 7796 [Salas-Salvadó, J, Ros Róala, E and Sabaté Casellas, J, editors]. Barcelona: Glosa.
26Serrano, A, Cofrades, S, Ruiz-Capillas, C, et al. (2005) Nutritional profile of restructured beef steak with added walnuts. Meat Sci 70, 647654.
27Canales, A, Benedí, J, Nus, M, et al. (2007) Effect of walnut-enriched restructured meat in the antioxidant status of overweight/obese senior subjects with at least one extra CHD-risk factor. J Am Coll Nutr 26, 225232.
28Nus, M, Frances, F, Librelotto, J, et al. (2007) Arylesterase activity and antioxidant status depend on PON1-Q192R and PON1-L55M polymorphisms in subjects with increased risk of cardiovascular disease consuming walnut-enriched meat. J Nutr 137, 17831788.
29Olmedilla-Alonso, B, Granado-Lorencio, F, Herrero-Barbudo, C, et al. (2008) Comsumption of restructured meat products with added walnuts has a cholesterol-lowering effect in subjects at high cardiovascular risk: a randomised, crossover, placebo-controlled study. J Am Coll Nutr 27, 342348.
30Basili, S, Pacini, G, Guagnano, MT, et al. (2006) Insulin resistance as a determinant of platelet activation in obese women. J Am Coll Cardiol 48, 25312538.
31Coban, E, Yilmaz, A & Sari, R (2007) The effect of weight loss on the mean platelet volume in obese patients. Platelets 18, 212216.
32Vignini, A, Nanetti, L, Moroni, C, et al. (2008) Platelet nitric oxide production and IR: relation with obesity and hypertriglyceridemia. Nutr Metab Cardiovasc Dis 18, 553558.
33Moreiras, O, Carbajal, A & Cabrera, L (editors) (2007) Tablas de Composición de Alimentos. Madrid: Editorial Pirámide.
34Olmedilla Alonso, B, Granado Lorencio, F, Herrero Barbudo, C, et al. (2005) Productos cárnicos funcionales preparados con nuez. Evaluación del efecto funcional. Alimentación 24, 3741.
35Cardinal, DC & Flower, RJ (1980) The electronic aggregometer: a novel device for assessing platelet behavior in blood. J Pharmacol Methods 3, 135158.
36Hishinuma, T, Yu, GS, Takabatake, M, et al. (1996) Analysis of the thromboxane/prostacyclin balance in human urine by gas chromatography/selected ion monitoring: abnormalities in diabetics. Prostaglandins Leukot Essent Fatty Acids 54, 445449.
37Mensink, RP, van Houwelingen, AC, Kromhout, D, et al. (1999) A vitamin E concentrate rich in tocotrienols had not effect on serum lipids, lipoproteins, or platelet function in men with mildly elevated serum lipid concentrations. Am J Clin Nutr 69, 213219.
38Bagchi, D, Garg, A, Krohn, RL, et al. (1997) Oxygen free radical scavenging abilities of vitamin C and E, and a grape seed proanthocyanidin extract in vitro. Res Commun Mol Pathol Pharmacol 95, 179189.
39Bravo, L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56, 317333.
40Bagchi, D, Garg, A, Krohn, RL, et al. (1998) Protective effect of grape proanthocyanidins and selected antioxidants against TPA-induced hepatic and brain lipid peroxidation and DNA fragmentation, and peritoneal macrophage activation in mice. Gen Pharmacol 30, 771776.
41Murray, M & Pizzorno, J (1999) Procyanidolic oligomeriers. In The Textbook of Natural Medicine, 2nd ed., pp. 899902 [Murray, M and Pizzorno, J, editors]. London: Churchill Livington.
42Robert, L, Godeau, G, Gavignet-Jeannin, C, et al. (1990) The effect of procyanidolic oligomers on vascular permeability. A study using quantitative morphology. Pathol Biol (Paris) 38, 608616.
43Anfossi, G, Russo, I, Massucco, P, et al. (2004) Impaired synthesis and action of antiaggregating cyclic nucleotides in platelets from obese subjects: possible role in platelet hyperactivation in obesity. Eur J Clin Invest 34, 482489.
44Srivastava, KC (1985) Docosahexaenoic acid (C22:6 omega 3) and linoleic acid are anti-aggregatory, and alter arachidonic acid metabolism in human platelets. Prostaglandins Leukot Med 7, 319327.
45Szczeklik, A, Gryglewski, RJ, Domagala, B, et al. (1985) Dietary supplementation with vitamin E in hyperlipoproteinemias: effects on plasma lipid peroxides, antioxidant activity, prostacyclin generation and platelet aggregability. Thromb Haemost 54, 425430.
46Fine, AM (2000) Oligomeric proanthocyanidin complexes: History, structure, and phytopharmaceutical applications. Alternative Med Rev 5, 144151.

Keywords

Platelet aggregation, eicosanoid production and thrombogenic ratio in individuals at high cardiovascular risk consuming meat enriched in walnut paste. A crossover, placebo-controlled study

  • Amaia Canales (a1), Sara Bastida (a1), Josana Librelottto (a1), Meritxell Nus (a1), Francisco J. Sánchez-Muniz (a1) and Juana Benedi (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed