Skip to main content Accessibility help
×
Home

Overnight urinary excretion of isoflavones as an indicator for dietary isoflavone intake in Korean girls of pubertal age

  • Jihye Kim (a1), Hye Jin Kim (a2), Hyojee Joung (a3), Min Kyung Park (a2), Shanji Li (a4), YoonJu Song (a5), Adrian A. Franke (a6) and Hee-Young Paik (a2)...

Abstract

Little is known about the bioavailability of isoflavones in children. Previous studies have shown that children excrete more isoflavone in urine compared with adults. Thus we examined the relationship between usual dietary isoflavone intake and the urinary excretion of isoflavonoids in Korean girls of pubertal age. Twelve girls each were selected from the lowest and the highest quartiles of isoflavone intake among 252 Korean girls aged 8–11 years. Age, BMI and sexual maturation stage were matched between the two groups. Dietary intakes for 3 d by diet record and overnight urine samples were collected at baseline and at 6 and 12 months. Total and individual isoflavone (daidzein, genistein and glycitein) intakes were calculated from diet records. The parent isoflavone compounds (daidzein, genistein and glycitein) and their metabolites (equol, O-desmethylangolensin (O-DMA), dihydrodaidzein and dihydrogenistein) present in the urine samples were analysed using liquid chromatography–MS. Intake levels of total and individual isoflavone compounds were significantly higher in the high isoflavone (HI) group than the levels in the low isoflavone (LI) group (P < 0·05). Urinary excretion of all isoflavone parent compounds was significantly higher in the HI group than in the LI group (P < 0·0001). Among isoflavone metabolites, only O-DMA and total metabolites were significantly different (P < 0·05). Total isoflavone intake was highly correlated with the urinary excretion of total parent compounds (r 0·68; P < 0·01), parent compounds plus their metabolites (r 0·66–0·69; P < 0·01) and total isoflavonoids (r 0·72; P < 0·0001). In conclusion, overnight urinary excretion of total isoflavonoids is a reliable biomarker of usual isoflavone intake in Korean girls of pubertal age.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Overnight urinary excretion of isoflavones as an indicator for dietary isoflavone intake in Korean girls of pubertal age
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Overnight urinary excretion of isoflavones as an indicator for dietary isoflavone intake in Korean girls of pubertal age
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Overnight urinary excretion of isoflavones as an indicator for dietary isoflavone intake in Korean girls of pubertal age
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor Hee-Young Paik, email hypaik@snu.ac.kr

References

Hide All
1Friedman, M & Brandon, DL (2001) Nutritional and health benefits of soy proteins. J Agric Food Chem 49, 10691086.
2Messina, M, Gardner, C & Barnes, S (2002) Gaining insight into the health effects of soy but a long way still to go: commentary on the fourth International Symposium on the Role of Soy in Preventing and Treating Chronic Disease. J Nutr 132, 547S551S.
3Stark, A & Madar, Z (2002) Phytoestrogens: a review of recent findings. J Pediatr Endocrinol Metab 15, 561572.
4Rowland, I, Faughnan, M, Hoey, L, et al. (2003) Bioavailability of phyto-oestrogens. Br J Nutr 89, Suppl. 1, S45S58.
5Setchell, KD, Brown, NM, Zimmer-Nechemias, L, et al. (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76, 447453.
6Coldham, NG, Darby, C, Hows, M, et al. (2002) Comparative metabolism of genistin by human and rat gut microflora: detection and identification of the end-products of metabolism. Xenobiotica 32, 4562.
7Joannou, GE, Kelly, GE, Reeder, AY, et al. (1995) A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol 54, 167184.
8Day, AJ, DuPont, MS, Ridley, S, et al. (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett 436, 7175.
9Atkinson, C, Skor, HE, Fitzgibbons, ED, et al. (2002) Overnight urinary isoflavone excretion in a population of women living in the United States, and its relationship to isoflavone intake. Cancer Epidemiol Biomarkers Prev 11, 253260.
10Chen, Z, Zheng, W, Custer, LJ, et al. (1999) Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutr Cancer 33, 8287.
11Grace, PB, Taylor, JI, Low, YL, et al. (2004) Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European Prospective Investigation of Cancer and Nutrition-Norfolk. Cancer Epidemiol Biomarkers Prev 13, 698708.
12Maskarinec, G, Singh, S, Meng, L, et al. (1998) Dietary soy intake and urinary isoflavone excretion among women from a multiethnic population. Cancer Epidemiol Biomarkers Prev 7, 613619.
13Seow, A, Shi, CY, Franke, AA, et al. (1998) Isoflavonoid levels in spot urine are associated with frequency of dietary soy intake in a population-based sample of middle-aged and older Chinese in Singapore. Cancer Epidemiol Biomarkers Prev 7, 135140.
14Sung, CJ (2002) The effect of soy isoflavone supplementation on urinary isoflavone excretion in Korean postmenopausal women. J Korean Soc Food Sci Nutr 31, 10431047.
15Franke, AA, Custer, LJ & Hundahl, SA (2004) Determinants for urinary and plasma isoflavones in humans after soy intake. Nutr Cancer 50, 141154.
16Shu, XO, Jin, F, Dai, Q, et al. (2001) Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev 10, 483488.
17Wu, AH, Wan, P, Hankin, J, et al. (2002) Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis 23, 14911496.
18Thanos, J, Cotterchio, M, Boucher, BA, et al. (2006) Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control 17, 12531261.
19Korde, LA, Wu, AH, Fears, T, et al. (2009) Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol Biomarkers Prev 18, 10501059.
20Franke, AA, Halm, BM, Custer, LJ, et al. (2006) Isoflavones in breastfed infants after mothers consume soy. Am J Clin Nutr 84, 406413.
21Halm, BM, Ashburn, LA & Franke, AA (2007) Isoflavones from soya foods are more bioavailable in children than adults. Br J Nutr 98, 9981005.
22Song, Y, Paik, HY & Joung, H (2008) Soybean and soy isoflavone intake indicate a positive change in bone mineral density for 2 years in young Korean women. Nutr Res 28, 2530.
23Park, MK, Song, Y, Joung, H, et al. (2007) Establishment of an isoflavone database for usual Korean foods and evaluation of isoflavone intake among Korean children. Asia Pac J Clin Nutr 16, 129139.
24Kimira, M, Arai, Y, Shimoi, K, et al. (1998) Japanese intake of flavonoids and isoflavonoids from foods. J Epidemiol 8, 168175.
25Liu, Z, Li, W, Sun, J, et al. (2004) Intake of soy foods and soy isoflavones by rural adult women in China. Asia Pac J Clin Nutr 13, 204209.
26Mei, J, Yeung, SS & Kung, AW (2001) High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 86, 52175221.
27Clarke, DB & Lloyd, AS (2004) Dietary exposure estimates of isoflavones from the 1998 UK Total Diet Study. Food Addit Contam 21, 305316.
28Keinan-Boker, L, van Der Schouw, YT, Grobbee, DE, et al. (2004) Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr 79, 282288.
29Kreijkamp-Kaspers, S, Kok, L, Bots, ML, et al. (2004) Dietary phytoestrogens and vascular function in postmenopausal women: a cross-sectional study. J Hypertens 22, 13811388.
30Maskarinec, G, Franke, AA, Williams, AE, et al. (2004) Effects of a 2-year randomized soy intervention on sex hormone levels in premenopausal women. Cancer Epidemiol Biomarkers Prev 13, 17361744.
31Marshall, WA & Tanner, JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44, 291303.
32The Korean Nutrition Society (2000) Recommended Dietary Allowances for Koreans. Seoul: Joonang-Munhwa.
33Blair, RM, Appt, SE, Franke, AA, et al. (2003) Treatment with antibiotics reduces plasma equol concentration in cynomolgus monkeys (Macaca fascicularis). J Nutr 133, 22622267.
34Franke, AA & Custer, LJ (1994) High-performance liquid chromatographic assay of isoflavonoids and coumestrol from human urine. J Chromatogr B Biomed Appl 662, 4760.
35Franke, AA, Custer, LJ, Wilkens, LR, et al. (2002) Liquid chromatographic-photodiode array mass spectrometric analysis of dietary phytoestrogens from human urine and blood. J Chromatogr B Analyt Technol Biomed Life Sci 777, 4559.
36Yamamoto, S, Sobue, T, Sasaki, S, et al. (2001) Validity and reproducibility of a self-administered food-frequency questionnaire to assess isoflavone intake in a Japanese population in comparison with dietary records and blood and urine isoflavones. J Nutr 131, 27412747.
37Ritchie, MR, Morton, MS, Thompson, AM, et al. (2004) Investigation of the reliability of 24 h urine excretion as a biomarker of isoflavone exposure over time and over a wide range of isoflavone intakes. Eur J Clin Nutr 58, 12861289.
38Maskarinec, G, Oshiro, C, Morimoto, Y, et al. (2005) Urinary isoflavone excretion as a compliance measure in a soy intervention among young girls: a pilot study. Eur J Clin Nutr 59, 369375.
39Lampe, JW, Gustafson, DR, Hutchins, AM, et al. (1999) Urinary isoflavonoid and lignan excretion on a Western diet: relation to soy, vegetable, and fruit intake. Cancer Epidemiol Biomarkers Prev 8, 699707.
40Ingram, D, Sanders, K, Kolybaba, M, et al. (1997) Case–control study of phyto-oestrogens and breast cancer. Lancet 350, 990994.
41Karr, SC, Lampe, JW, Hutchins, AM, et al. (1997) Urinary isoflavonoid excretion in humans is dose dependent at low to moderate levels of soy-protein consumption. Am J Clin Nutr 66, 4651.
42Xu, X, Wang, HJ, Murphy, PA, et al. (1994) Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J Nutr 124, 825832.
43Franke, AA, Halm, BM & Ashburn, LA (2008) Isoflavones in children and adults consuming soy. Arch Biochem Biophys 476, 161170.
44United States Department of Agriculture & Agriculture Research Service (2002) Documentation for the USDA-IOWA State University isoflavone database. http://www.nal.usda.gov/fnic/foodcomp/Data/isoflav/isoflav.html (accessed October 2004).

Keywords

Overnight urinary excretion of isoflavones as an indicator for dietary isoflavone intake in Korean girls of pubertal age

  • Jihye Kim (a1), Hye Jin Kim (a2), Hyojee Joung (a3), Min Kyung Park (a2), Shanji Li (a4), YoonJu Song (a5), Adrian A. Franke (a6) and Hee-Young Paik (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed