Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T09:18:04.613Z Has data issue: false hasContentIssue false

Nutritional evaluation of protein, phosphorus, calcium and magnesium bioavailability from lupin (Lupinus albus var. multolupa)-based diets in growing rats: effect of α-galactoside oligosaccharide extraction and phytase supplementation

Published online by Cambridge University Press:  08 March 2007

Jesús M. Porres
Affiliation:
Departamento de Fisiolog´aInstituto de NutriciónUniversidad de GranadaCampus Universitario de Cartuja s/nGranada 18071Spain
Pilar Aranda
Affiliation:
Departamento de Fisiolog´aInstituto de NutriciónUniversidad de GranadaCampus Universitario de Cartuja s/nGranada 18071Spain
María López-Jurado
Affiliation:
Departamento de Fisiolog´aInstituto de NutriciónUniversidad de GranadaCampus Universitario de Cartuja s/nGranada 18071Spain
Gloria Urbano*
Affiliation:
Departamento de Fisiolog´aInstituto de NutriciónUniversidad de GranadaCampus Universitario de Cartuja s/nGranada 18071Spain
*
*Corresponding author: Dr Gloria Urbano, fax +34 958 248959, email gurbano@ugr.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nutritional composition of the legume Lupinus albus var. multolupa, raw or after α-galactoside extraction, and its effect on the bioavailability of protein, P, Ca, and Mg by growing rats wasevaluated using a balance technique. The protein and dietary fibre content of the lupin floursstudied was high, and 89–94% of the dietary fibre was present as insoluble dietary fibre. The α-galactoside extraction process did not disrupt the nutritional quality of protein, and the digestive and metabolic utilisation of this nutrient was high and comparable with that obtained from a casein–cystine control diet (pair-fed to the average daily food intake of the experimental groups fed the different lupin diets). Bioavailability of P, Ca, and Mg from the lupin diets tested was high, and supplementation of an exogenous microbial phytase (750 phytase units/kg) did not cause any further improvement. Mineral content in the bone tissue (femur and sternum) did not correlate to mineral balance, which, on the other hand, was related to the mineral content of other tissues such as blood, plasma, liver and kidney. Due to its ability to grow under adverse edaphic and climatic conditions and to its good nutritional quality, α-galactoside-free lupin flour supplemented with the required amounts of minerals and vitamins to meet nutrient requirements can be used as an excellent dietary source for the preparation of dietetic products.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Aranda, P, López-Jurado, M, Fernández, M, Moreu, MC, Porres, JM & Urbano, GBioavailability of calcium and magnesium from faba beans (Vicia fabaLvar major), soaked in different pH solutions and cooked, in growing rats. J Sci Food Agric 2004 84 15141520CrossRefGoogle Scholar
Barringer, TA, Kirk, JK, Santaniello, AC, Foley, KL & Michielutte, REffect of a multivitamin and mineral supplement on infection and quality of life: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2003 138 365371Google Scholar
Blaney, SZee, JA, Mongeau, R & Marin, JCombined effects of various types of dietary fiber and protein on in vitrocalcium availability. J Agric Food Chem 1996 44 35873590Google Scholar
Bouhnik, Y, Vahedi, K, Achour, L, Attar, A, Salfati, J, Pochart, P, Marteau, P, Flourie, B, Bornet, F & Rambaud, JCShort-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. J Nutr 1999 129 113116Google Scholar
Brink, EJ, Beynen, AC, Dekker, PR, van Beresteijn, ECH & van der Meer, RInteraction of calcium and phosphate decreases ileal magnesium solubility and apparent magnesium absorption in rats. J Nutr 1992 122 580586Google Scholar
Burton-Freeman, BDietary fiber and energy regulation. J Nutr 2000 130 S272S275CrossRefGoogle ScholarPubMed
Chen, PS, Toribara, TY & Warner, HMicrodetermination of phosphorus. Anal Chem 1956 28 17561758CrossRefGoogle Scholar
Clarkson, PM & Haymes, EMTrace mineral requirements for athletes. Int J Sport Nutr 1994 4 104119CrossRefGoogle ScholarPubMed
Claye, SS, Idouraine, A & Weber, CWIn-vitro mineral binding capacity of five fiber sources and their insoluble components for magnesium and calcium. Food Chem 1998 61 333338CrossRefGoogle Scholar
De Penna, EW, Avendano, P, Soto, D & Burger, AChemical and sensory characterization of cakes enriched with dietary fiber and micronutrients for the elderly. Arch Latin Nutr 2003 53 7483Google Scholar
Donangelo, CM, Trugo, LC, Trugo, NMF & Eggum, BOEffect of germination of legume seeds on chemical composition and on protein and energy utilization in rats. Food Chem 1995 53 2327Google Scholar
Donovan, BC, McNiven, MA, Vanlunen, TA, Anderson, DM & MacLeod, JAReplacement of soyabean-meal with dehydrated lupin seeds in pig diets. Anim Feed Sci Technol 1993 43 7785CrossRefGoogle Scholar
Dupont, MS, Muzquiz, M, Estrella, I, Fenwick, GR & Price, KRRelationship between the sensory properties of lupin seed with alkaloid and tannin content. J Sci Food Agric 1994 65 95100CrossRefGoogle Scholar
El-Adawy, TA, Rahma, EH, El-Bedawy, AA & Sobihah, TYEffect of soaking process on nutritional quality and protein solubility of some legume seeds. Nahrung 2000 44 3393433.0.CO;2-T>CrossRefGoogle ScholarPubMed
European Community Council Directional Guides Related to Animal Housing and Care. Official Bulletin of European Communities 18.12.86N L358/1-N L 358/28. BarcelonaEuropean Community Council 1986Google Scholar
Farrel, DJ, Perez-Maldonado, RA & Mannion, PFOptimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets II. Broiler experiments. Br Poult Sci 1999 40 674680CrossRefGoogle Scholar
Fernández, M, Aranda, P, López-Jurado, M, García-Fuentes, MA & Urbano, GBioavailability of phytic acid phosphorus in processed Vicia faba L. var. major. J Agric Food Chem 1997 45 43674371CrossRefGoogle Scholar
Fernández, M, López-Jurado, M, Aranda, P & Urbano, GNutritional assessment of raw and processed faba bean (Vicia faba L.) cultivar major in growing rats. J Agric Food Chem 1996 44 27662772CrossRefGoogle Scholar
Górecka, D, Lampart-Szczapa, E, Janitz, W & Sokolowska, BComposition of fractional and functional properties of dietary fiber of lupines. Nahrung 2000 44 2292323.0.CO;2-I>CrossRefGoogle ScholarPubMed
Gueguen, J & Cerletti, PProteins of some legume seeds: soybean, pea, faba bean and lupin. In New and Developing Sources of Food Proteins, Hudson, BJFLondonChapman & Hall 1994 145183Google Scholar
Gulewicz, P, Ciesiolka, D, Frias, J, Vidal-Valverde, C, Frejnagel, S, Trojanowska, K & Gulewicz, KSimple method of isolation and purification of a-galactosides from legumes. J Agric Food Chem 2000 48 31203123CrossRefGoogle Scholar
Gulewicz, P, Szymaniec, S, Bubak, B, Frias, J, Vidal-Valverde, C, Trojanowska, K & Gulewicz, KBiological activity of agalactoside preparations from Lupinus angustifolius L. and Pisum sativum L. seeds. J Agric Food Chem 2002 50 384389CrossRefGoogle Scholar
Hall, RS & Johnson, SKSensory acceptability of foods containing Australian sweet lupin (Lupinus angustifolius) flour. J Food Sci 2004 69 SNQ92SNQ97CrossRefGoogle Scholar
Hall, RS, Johnson, SK, Baxter, AL & Ball, MJLupin kernel fibre-enriched foods beneficially modify serum lipids in men. Eur J Clin Nutr 2005 59 325333Google Scholar
Hardwick, LL, Jones, MR, Brautbar, N & Lee, DBNMagnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate. J Nutr 1991 121 1323CrossRefGoogle ScholarPubMed
Hill, GDThe composition and nutritive value of lupin seed. Nutr Abstr Rev 1977 47 511529Google Scholar
Hsu, HW, Vavak, DL, Satterlee, LD & Miller, GAA multienzyme technique for estimating protein digestibility. J Food Sci 1977 42 12691273CrossRefGoogle Scholar
Koh-Banerjee, P & Rimm, EBWhole grain consumption and weight gain: a review of the epidemiological evidence, potential mechanisms and opportunities for future research. Proc Nutr Soc 2003 62 2569Google ScholarPubMed
Lamghari, R, Villaume, C, Pelletier, X, Bau, HM, Schwertz, A, Nicolas, J & Mejean, LEffect of rancidity of Lupinus albus proteinconcentrate-based diets on food intake and growth of Wistar rats. J Sci Food Agric 1997 75 80863.0.CO;2-O>CrossRefGoogle Scholar
Lampart-Szczapa, E, Siger, A, Trojanowska, K, Nogala-Kalucka, M, Malecka, M & Pacholek, BChemical composition and antibacterial activities of lupin seeds extracts. Nahrung 2003 47 286290CrossRefGoogle ScholarPubMed
Lei, XG & Porres, JMPhytases. In Encyclopedia of Animal Science Pond, WG and Bell, AWNew YorkMarcel Dekker 2005 704707Google Scholar
Lerma, A, Planells, E, Aranda, P & Llopis, JEvolution of Mg deficiency in rats. Ann Nutr Metab 1993 37 210217CrossRefGoogle ScholarPubMed
Lopez, HW, Coudray, C, Bellanger, J, Younes, H, Demigné, C & Rémésy, CIntestinal fermentation lessens the inhibitory effects of phytic acid on mineral utilization in rats. J Nutr 1998 128 11921198Google Scholar
Luccia, BHD & Kunkel, MEIn vitro availability of calcium from sources of cellulose, methylcellulose, and psyllium. Food Chem 2002 77 139146CrossRefGoogle Scholar
McDonough, FE, Sarwar, G, Steinke, FH, Slump, P, Garcia, S & Boisen, SIn vitro assay for protein digestibility: interlaboratory study. J Assoc Off Anal Chem 1990 73 622625Google ScholarPubMed
Martínez-Villaluenga, C, Frías, J & Vidal-Valverde, CRaffi-nose family oligosaccharides and sucrose contents in 13 Spanish lupin cultivars. Food Chem 2005a 91 645649CrossRefGoogle Scholar
Martinez-Villaluenga, C, Frias, J, Vidal-Valverde, C & Gomez, RRaffinose family of oligosaccharides from lupin seeds as prebiotics: application in dairy products. J Food Protect 2005b 68 12461252CrossRefGoogle ScholarPubMed
Mitchell, BL, Ulrich, CM & McTiernan, A (2003) Supplementation with vitamins or minerals and immune function: can the elderly benefit? Nutr Res 2003 23 11171139CrossRefGoogle Scholar
National Research Council (1995) Nutrient Requirements of Laboratory Animals 4th revised ed Washington, DCNational Academy PressGoogle Scholar
Perez-Maldonado, RA, Mannion, PF & Farrell, DJOptimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets. I. Chemical composition and layer experiments. Br Poult Sci 1999 40 667673CrossRefGoogle Scholar
Porres, JM, Aranda, P, López-Jurado, M & Urbano, GEffect of natural and controlled fermentation on chemical composition and nutrient dialyzability from beans (Phaseolus vulgaris L.). J Agric Food Chem 2003a 51 51445149CrossRefGoogle ScholarPubMed
Porres, JM, López-Jurado, M, Aranda, P & Urbano, GEffect of heat treatment and mineral and vitamin supplementation on the nutritive use of protein and calcium from lentils (Lens culinaris, M) in growing rats. Nutrition 2003b 19 451456Google Scholar
Porres, JM, Aranda, P, López-Jurado, M & Urbano, GNutritional potential of raw and free a-galactosides lupin (Lupinus albus var. multolupa) seed flours. Effect of phytase treatment on nitrogen and mineral dialyzability. J Agric Food Chem 2005 53 30883094Google Scholar
Prosky, L, Asp, NG, Schweizer, T, De Vries, JW & Furda, IDetermination of insoluble and soluble dietary fiber in foods and food products: collaborative study. J Assoc Off Anal Chem 1992 75 360367Google Scholar
Reeves, PG, Nielsen, FH & Fahey, GC JrAIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993 123 19391951CrossRefGoogle Scholar
Schaafsma, GBioavailability of calcium and magnesium. Eur J Clin Nutr 1997 51 S13S16Google ScholarPubMed
Sirtori, CR, Lovati, MR, Manzoni, C, Castiglioni, S, Duranti, M, Magni, C, Morandi, S, D'Agostino, A & Arnoldi, AProteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. J Nutr 2004 134 1823CrossRefGoogle Scholar
Slavin, JLDietary fiber and body weight. Nutrition 2005 21 411418CrossRefGoogle ScholarPubMed
Steenfeldt, S, Gonzalez, E & Knudsen, KEBEffects of inclusion with blue lupins (Lupinus angustifolius) in broiler diets and enzyme supplementation in production performance, digestibility and dietary AME content. Anim Feed Sci Technol 2003 110 185200CrossRefGoogle Scholar
Suarez, FL, Springfield, J, Furne, JK, Lohrmann, TT, Kerr, PS & Levitt, MDGas production in humans ingesting a soybean flour derived from beans naturally low in oligosaccharides. Nutr 1999 69 135139Google Scholar
Torre, M, Rodríguez, AR & Saura-Calixt, FStudy of the interaction of calcium ions with lignin, cellulose, and pectin. J Agric Food Chem 1992 40 17621766CrossRefGoogle Scholar
Trugo, LC, Donangelo, CM, Trugo, NMF & Bach, Knudsen KEEffect of heat treatment on nutritional quality of germinated legume seeds. J Agric Food Chem 2000 48 20822086CrossRefGoogle ScholarPubMed
Tsaliki, E, Lagouri, V & Doxastakisk, GEvaluation of the antioxidant activity of lupin seed flour and derivatives (Lupinus albus ssp. Graecus). Food Chem 1999 65 7175CrossRefGoogle Scholar
Urbano, G, Aranda, P, Gómez-Villalva, E, Frejnagel, S, Porres, JM, Frías, J, Vidal-Valverde, C & López-Jurado, MNutritional evaluation of pea (Pisum sativum L.) protein diets alter mild hydrothermal treatment and with and without added phytase. J Agric Food Chem 2003 51 24152420CrossRefGoogle Scholar
Urbano, G, López-Jurado, M, Aranda, P, Vidal-Valverde, C, Tenorio, E & Porres, JThe role of phytic acid in legumes: antinutrient or beneficial function? J Physiol Biochem 2000 56 283294Google Scholar
van Barneveld, RJUnderstanding the nutritional chemistry of lupin (Lupins spp) seed to improve livestock production efficiency. Nutr Res Rev 1999 12 203230Google Scholar
Vidal-Valverde, C, Frias, J, Sierra, I, Blázquez, I, Lambein, F & Kuo, YNew functional legume foods by germination: effect on the nutritive value of beans, lentils and peas. Eur Food Res Technol 2002 215 472477Google Scholar
Vidal-Valverde, C, Frias, J, Sotomayor, C, Diaz-Pollan, C, Fernandez, M & Urbano, GNutrients and antinutritional factors in faba beans as affected by processing. Z Lebenm Unters Forsch 1998 207A 140145Google Scholar
Younes, H, Demigné, C & Rémésy, CAcidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. Br J Nutr 1996 75 301314Google Scholar