Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T03:18:04.800Z Has data issue: false hasContentIssue false

Nucleic acid metabolism in the ruminant

Determination of nucleic acids in digesta

Published online by Cambridge University Press:  09 March 2007

A. B. Mcallan
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Procedures, based on those of Schmidt & Thannhauser (1945) and Schneider (1945), for the extraction and estimation of nucleic acids in bovine digesta were examined in detail.

2. Final methods which were suitable for routine determination of RNA and DNA were essentially as follows. Digesta samples were extracted in the cold, first with a solution of trichloroacetic acid in ethanol, then with aqueous trichloroacetic acid solution and finally with lipid solvents. The dried residue was hydrolysed with alkali, purified by passage through a Dowex resin, and the RNA, in the form of mononucleotides, determined by U.V. absorption. DNA was determined separately in hot perchloric acid extracts of the original dried residue by colorimetric estimation of the deoxyribose content.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1969

References

Burton, K. (1956). Biochem. J. 62, 315.CrossRefGoogle Scholar
Ceriotti, G. (1952). J. biol. Chem. 198, 297.CrossRefGoogle Scholar
de Deken-Grenson, M. & de Deken, R. H. (1959). Biochim. biophys. Acta 31, 195.CrossRefGoogle Scholar
Dische, Z. (1955). In The Nucleic Acids, p. 285. [Chargaff, E. & Davidson, J. N., editors.] New York: Academic Press Inc.Google Scholar
Ellis, W. C. & Pfander, W. H. (1965). Nature, Lond. 205, 974.CrossRefGoogle Scholar
Gausseres, B. & Fauconneau, G. (1965). Annls Biol. anim. Biochim. Biophys. 5, 5.CrossRefGoogle Scholar
Hallinan, T., Fleck, A. & Munro, H. N. (1963). Biochim. biophys. Acta 68, 131.CrossRefGoogle Scholar
Holdgate, D. P. & Goodwin, T. W. (1965). Phytochemistry 4, 831.CrossRefGoogle Scholar
Hutchison, W. C., Downie, E. D. & Munro, H. N. (1962). Biochim. biophys. Acta 55, 561.CrossRefGoogle Scholar
Hutchison, W. C. & Munro, H. N. (1961). Analyst, Lond. 86, 768.CrossRefGoogle Scholar
Hutchison, W. C. & Munro, H. N. (1962). Analyst, Lond. 87, 303.CrossRefGoogle Scholar
Ingle, J. (1963). Phytochemistry 2, 353.CrossRefGoogle Scholar
Keck, K. (1956). Archs Biochem. Biophys. 63, 446.CrossRefGoogle Scholar
Kerr, S. E & Seraidarian, K. (1945). J. biol. Chem. 159, 211.CrossRefGoogle Scholar
Løvtrop, S & Roos, K. (1961).Biochim. biophys. Acta 53, I.Google Scholar
McAllan, A. B & Smith, R. H. (1968). Proc. Nutr. Soc. 27, 47A.Google Scholar
McDonald, I. W. (1954). Biochem. J. 57, 566.CrossRefGoogle Scholar
Munro, H. N & Fleck, A. (1966). Analyst, Lond. 91, 78.CrossRefGoogle Scholar
Munro, H. N & Fleck, A. (1967). Meth. biochem. Analysis 14, 113.CrossRefGoogle Scholar
Schmidt, G., Hecht, L & Thannhauser, S. J, (1947–8). J. gen. Physiol. 31, 203.CrossRefGoogle Scholar
Schmidt, G & Thannhauser, S. J. (1945). J. biol. Chem. 161, 83.CrossRefGoogle Scholar
Schneider, W.C. (1945). J. biol. Chem. 161, 293.CrossRefGoogle Scholar
Smillie, R. M & Krotkov, G. (1960). Can. J. Bot. 38, 31.CrossRefGoogle Scholar
Smith, R. H., McAllan, A. B & Hill, W. B. (1968). Proc. Nutr. Soc. 27, 48A.CrossRefGoogle Scholar
Steele, W.J., Okamura, N & Busch, H. (1964). Biochim. biophys. Acta 87, 490.Google Scholar
Topps, J. H & Elliott, R. C. (1965). Nature, Lond. 205, 498.CrossRefGoogle Scholar
Volkin, E & Astrachan, L. (1956). Virology 2, 149.CrossRefGoogle Scholar