Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-26T22:21:45.591Z Has data issue: false hasContentIssue false

Nitrogen retention in rats fed on diets enriched with arginine and glycine

1. Improved N retention after trauma

Published online by Cambridge University Press:  06 August 2007

H. S. Sitren
Affiliation:
Department of Nutrition, Rutgers University, New Brunswick, New Jersey 08903, USA
H. Fisher
Affiliation:
Department of Nutrition, Rutgers University, New Brunswick, New Jersey 08903, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Nitrogen retention was measured in adult rats (250–350 g) subjected to the trauma of hind-leg fracture and given diets with or without arginine plus glycine supplementation. Observations were also recorded on excretion of creatine, creatinine, allantoin, and orotic acid. Liver and skeletal muscle transaminase activities were also determined.

2. When traumatized rats weighing approximately 250 g were given a diet with 200 g casein/ kg, supplemented with 20 g arginine and 10 g glycine/kg (EC diet) or a casein diet made isonitrogenous with the EC diet by addition of aspartic acid (C diet), a 60–70% increase in N retention was observed for the first 5 d post-injury for animals consuming the EC diet. A soyabean (S) diet, isonitrogenous to the diet containing 20% casein, supplemented with arginine and glycine was as effective as the EC diet in promoting significantly better N retention of traumatized rats (350 g) in comparison to rats given the C diet.

3. When the dietary casein content was reduced to 100 g/kg, supplements of 10 g arginine and 5 g glycine or 20 g arginine and 10 g glycine/kg did not improve N retention. It is suggested that both protein quality and protein quantity are important following injury.

4. An increased excretion of creatine was observed in traumatized rats given the high-protein diets supplemented with arginine and glycine. No consistent changes were noted for urine creatinine.

5. Urine allantoin levels remained stable after leg-fracture in rats consuming either the C or EC diets. Differences in the levels of urine orotic acid were found during both the pre- and post-injury periods in rats given the C, EC or S diets.

6. The mechanisms responsible for the improved N retention of traumatized rats consuming the high-protein diets with supplements of arginine and glycine may be related to the role of arginine both as a constituent of muscle tissue and as an intermediate in the urea cycle.

7. In traumatized rats fed the C or EC diets, liver transaminase activity increased whereas the transaminase activity in skeletal muscle decreased. These results support the recent concept that the increased excretion of N following injury arises from diminished reutilization of amino acids by muscle tissue without an acute increase in the rate of muscle catabolism.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Abbott, W. E. & Albertsen, K. (1963). Ann. N. Y. Acad. Sci. 110, 941.CrossRefGoogle Scholar
Allison, J. B. & Bird, J. W. C. (1964). In Mammalian Protein Metabolism, p. 483 [Munro, H. N. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
Baron, D. N. (editor) (1973). In A Short Textbook of Clinical Biochemistry, p. 80. Philadelphia: J. B. Lippincott.Google Scholar
Bird, J. W. C., Berg, T. & Leathem, J. H. (1968). Proc. Soc. exp. Biol. Med. 127, 182.CrossRefGoogle Scholar
Blackburn, G. L., Flatt, J. P., Clowes, G. H. A. Jr, O'Donnell, T. F. & Hensle, T. E. (1971). Ann. Surg. 177, 588.CrossRefGoogle Scholar
Boch, K. & Schoenheimer, R. (1941). J. biol. Chem. 138, 167.Google Scholar
Block, R. J. & Bolling, D. (1951). In The Amino Acid Composition of Proteins and Foods, 2nd ed. Springfield, Illinois: Charles C. Thomas.Google Scholar
BreuerL. H., Jr. L. H., Jr., Pond, W. G., Warner, R. G. & Loosli, J. K. (1964). J. Nutr. 82, 499.CrossRefGoogle Scholar
Brown, J. H. & Allison, J. B. (1948). Proc. Soc. exp. Biol. Med. 96, 196.CrossRefGoogle Scholar
Browne, J. S. L., Schenker, V. & Stevenson, J. A. E. (1944). J. clin. Invest. 23, 932.Google Scholar
Caldwell, F. T. (1962). Ann. Surg. 155, 119.CrossRefGoogle Scholar
Calloway, D. H., Grossman, M. I., Bowman, J. & Calhoun, W. K. (1955). Surgery 37, 935.Google Scholar
Cuthbertson, D. P. (1931). Biochem, J. 25, 236.CrossRefGoogle Scholar
Cuthbertson, D. P. (1936). Br. J. Surg. 23, 505.CrossRefGoogle Scholar
Cuthbertson, D. P. (1964). In Mammalian Protein Metabolism, p. 373 [Munro, H. N. and Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
Cuthbertson, D. P. (1970). In Energy Metabolism in Trauma, p. 99 [Porter, R. and Knight, J., editors]. London: J. & A. Churchill.Google Scholar
Cuthberston, D. P., Fell, G. S., Rahimi, A. G. & Tilstone, W. J. (1972). Adv. exp. Med. Biol. 33, 409.CrossRefGoogle Scholar
Cuthbertson, D. P., Fell, G. S., Smith, C. M. & Tilstone, W. J. (1972). Nutr. Metab., Suppl. 14, 92.CrossRefGoogle Scholar
Cuthbertson, D. P., McGirr, J. C. & Robertson, J. S. (1939). Q. Jl exp. Physiol. 29, 13.CrossRefGoogle Scholar
Cuthbertson, D. P., Shaw, G. B. & Young, F. G. (1941). J. Endocr. 2, 468.CrossRefGoogle Scholar
Davies, J. W. L., Liljedahl, S. O. & Burke, G. (1970). Injury 1, 43.CrossRefGoogle Scholar
Fisher, H., Salander, R. C. & Taylor, M. W. (1956 a). J. Nutr. 58, 459.CrossRefGoogle Scholar
Fisher, H., Salander, R. C. & Taylor, M. W. (1956 b). J. Nutr. 59, 491.CrossRefGoogle Scholar
Greenstein, J. P., Winitz, M., Gullino, P., Birnbaum, S. M., Otey, M. C. (1956). Archs Biochem. Biophys. 64, 342.CrossRefGoogle Scholar
Griffiths, W. J. (1964). Clinica chim. Acta 9, 210.CrossRefGoogle Scholar
Hinton, P., Allison, S. P., Littlejohn, S. & Lloyd, J. (1971). Lancet i, 767.CrossRefGoogle Scholar
Jones, M. E. (1970). Adv. Enzyme Regul. 9, 19.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clin. Chem. 11, 876.CrossRefGoogle Scholar
Milner, J. A. & Visek, W. J. (1973). Nature, Lond. 245, 211.CrossRefGoogle Scholar
Milner, J. A., Visek, W. J. & Hague, D. E. (1975). Fedn Proc. Fedn Am. Socs exp. Biol. 34, 3737 (Abstr).Google Scholar
Milner, J. A., Wakeling, A. E. & Visek, W. J. (1974). J. Nutr. 104, 1681.CrossRefGoogle Scholar
Mitchell, H. H. (1962). Comparative Nutrition of Man and Domestic Animals, p. 138. New York: Academic Press.Google Scholar
Munro, H. N. & Chalmers, N. I. (1945). Br. J. exp. Path. 26, 396.Google Scholar
National Research Council (1972). Nutrient Requirements of Domestic Animals, no. 10, 2nd ed., p. 56. Washington D.C.: National Academy of Sciences.Google Scholar
O'Keefe, S. J. D., Sender, P. M. & James, W. P. T. (1974). Lancet ii, 1035.CrossRefGoogle Scholar
Oser, B. L. (1965). In Hawk's Physiological Chemistry, p. 1168. New York: McGraw-Hill.Google Scholar
Pak, N. P., Donoso, G. & Tagle, M. A. (1973). J. Nutr. 30, 107.CrossRefGoogle Scholar
Pentz, E. I. (1969). Analyt. Biochem. 27, 333.CrossRefGoogle Scholar
Prior, R. L. & Visek, W. J. (1973). J. Nutr. 103, 1107.CrossRefGoogle Scholar
Rogers, L. E. & Porter, F. S. (1968). Pediatrics, Springfield 42, 423.CrossRefGoogle Scholar
Sitren, H. S., Fisher, H. & Ali, R. (1975). J. Nutr. 105, 1318.CrossRefGoogle Scholar
Sitren, H. S., Fisher, H. & Griminger, P. (1975). Fedn Proc. Fedn Am. Socs exp. Biol. 34, 3740 Abstr.Google Scholar
Sitren, H. S. & Fisher, H. (1977). Br. J. Nutr. 37, 209.CrossRefGoogle Scholar
Stajner, A., Suva, J. & Musil, F. (1968). Experientia 15, 116.CrossRefGoogle Scholar
Steele, R. G. D. & Torrie, J. H. (1960). Principles and Procedures of Statistics. New York: McGraw-Hill.Google Scholar
Upjohn, H. L. & Levenson, S. M. (1958). Archs intern. Med. 101, 537.CrossRefGoogle Scholar