Skip to main content Accessibility help
×
Home

The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is predominant in the human infant brain

  • Matthew J. Kuchan (a1), Søren K. Jensen (a2), Elizabeth J. Johnson (a3) and Jacqueline C. Lieblein-Boff (a1)

Abstract

α-Tocopherol is the principal source of vitamin E, an essential nutrient that plays a crucial role in maintaining healthy brain function. Infant formula is routinely supplemented with synthetic α-tocopherol, a racaemic mixture of eight stereoisomers with less bioactivity than the natural stereoisomer RRR-α-tocopherol. α-Tocopherol stereoisomer profiles have not been previously reported in the human brain. In the present study, we analysed total α-tocopherol and α-tocopherol stereoisomers in the frontal cortex (FC), hippocampus (HPC) and visual cortex (VC) of infants (n 36) who died of sudden infant death syndrome or other conditions. RRR-α-tocopherol was the predominant stereoisomer in all brain regions (P<0·0001) and samples, despite a large intra-decedent range in total α-tocopherol (5–17 μg/g). Mean RRR-α-tocopherol concentrations in FC, HPC and VC were 10·5, 6·8 and 5·5 μg/g, respectively. In contrast, mean levels of the synthetic stereoisomers were RRS, 1–1·5; RSR, 0·8–1·0; RSS, 0·7–0·9; and Σ2S 0·2–0·3 μg/g. Samples from all but two decedents contained measurable levels of the synthetic stereoisomers, but the intra-decedent variation was large. The ratio of RRR:the sum of the synthetic 2R stereoisomers (RRS+RSR+RSS) averaged 2·5, 2·3 and 2·4 in FC, HPC and VC, respectively, and ranged from 1 to at least 4·7, indicating that infant brain discriminates against synthetic 2R stereoisomers in favour of RRR. These findings reveal that RRR-α-tocopherol is the predominant stereoisomer in infant brain. These data also indicate that the infant brain discriminates against the synthetic 2R stereoisomers, but is unable to do so completely. On the basis of these findings, investigation into the impact of α-tocopherol stereoisomers on neurodevelopment is warranted.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is predominant in the human infant brain
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is predominant in the human infant brain
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is predominant in the human infant brain
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: M. J. Kuchan, fax +1 614 727 4537, email matthew.kuchan@abbott.com

References

Hide All
1. Food and Nutrition Board & Institute of Medicine (2000) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: National Academies Press.
2. Sokol, RJ, Guggenheim, M, Iannaccone, ST, et al. (1985) Improved neurologic function after long-term correction of vitamin E deficiency in children with chronic cholestasis. N Engl J Med 313, 15801586.
3. Niki, E & Traber, MG (2012) A history of vitamin E. Ann Nutr Metab 61, 207212.
4. Traber, MG, Sokol, RJ, Ringel, SP, et al. (1987) Lack of tocopherol in peripheral nerves of vitamin E-deficient patients with peripheral neuropathy. N Engl J Med 317, 262265.
5. Mahoney, CW & Azzi, A (1998) Vitamin E inhibits protein kinase C activity. Biochem Biophys Res Commun 154, 694697.
6. Azzi, A, Gysin, R, Kempna, P, et al. (2004) Vitamin E mediates cell signaling and regulation of gene expression. Ann N Y Acad Sci 1031, 8695.
7. Azzi, A (2007) Molecular mechanism of alpha-tocopherol action. Free Radic Biol Med 43, 1621.
8. Brigelius-Flohe, R & Traber, MG (1999) Vitamin E: function and metabolism. FASEB J 13, 11451155.
9. Traber, MG (2007) Vitamin E regulatory mechanisms. Ann Rev Nutr 27, 347362.
10. Ferslew, KE, Acuff, RV, Daigneault, EA, et al. (1993) Pharmacokinetics and bioavailability of the RRR and all racemic stereoisomers of alpha-tocopherol in humans after single oral administration. J Clin Pharmacol 33, 8488.
11. Traber, MG, Burton, GW, Ingold, KU, et al. (1990) RRR- and SRR-alpha-tocopherols are secreted without discrimination in human chylomicrons, but RRR-alpha-tocopherol is preferentially secreted in very low density lipoproteins. J Lipid Res 31, 675685.
12. Ueda, T, Ichikawa, H & Igarashi, O (1993) Determination of a-tocopherol stereoisomers in biological specimens using chiral phase high-performance liquid chromatography. J Nutr Sci Vitaminol (Tokyo) 39, 207219.
13. Nitta-Kiyose, C, Hayashi, K, Tadahiko, U, et al. (1994) Distribution of a-Toc Stereoisomers in rats. Biosci Biotechnol Biochem 58, 20002003.
14. Leonard, SW, Terasawa, Y, Farese, RV Jr, et al. (2002) Incorporation of deuterated RRR- or all-rac-alpha-tocopherol in plasma and tissues of alpha-tocopherol transfer protein – null mice. Am J Clin Nutr 75, 555560.
15. Weiser, H, Riss, G & Kormann, AW (1996) Biodiscrimination of the eight alpha-tocopherol stereoisomers results in preferential accumulation of the four 2R forms in tissues and plasma of rats. J Nutr 126, 25392549.
16. Lauridsen, C, Engel, H, Jensen, SK, et al. (2002) Lactating sows and suckling piglets preferentially incorporate RRR- over all-rac-a-tocopherol into milk, plasma and tissues. J Nutr 132, 12581264.
17. Johnson, EJ, Vishwanathan, R, Johnson, MA, et al. (2013) Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J Aging Res 2013, 951786.
18. Craft, NE, Haitema, TB, Garnett, KM, et al. (2004) Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J Nutr Health Aging 8, 156162.
19. Metcalfe, T, Bowen, DM & Muller, DPR (1989) Vitamin E concentrations in human brain of patients with Alzheimer’s disease, fetuses with down’s syndrome, centenarians, and controls. Neurochem Res 14, 12091212.
20. Kim, HS, Arai, H, Arita, M, et al. (1996) Age-related changes of a-tocopherol transfer protein expression in rat liver. J Nutr Sci Vitaminol (Tokyo) 42, 1118.
21. Ulatowski, L, Parker, R, Warrier, G, et al. (2014) Vitamin E is essential for purkinje neuron integrity. Neurosci 260, 120129.
22. Jensen, SK, Norgaard, JV & Lauridsen, C (2006) Bioavailability of alpha-tocopherol stereoisomers in rats depends on dietary doses of all-rac- or RRR-alpha-tocopheryl acetate. Br J Nutr 95, 477487.
23. Vatassery, GT, Angerhofer, CK, Knox, CA, et al. (1984) Concentrations of vitamin E in various neuroanatomical regions and subcellular fractions, and the uptake of vitamin E by specific areas, of rat brain. Biochim Biophys Acta 792, 118122.
24. Vatassery, GT, Angerhofer, CK & Paterson, FJ (1984) Vitamin E concentrations in the brains and some selected peripheral tissues of selenium-deficient and vitamin E-deficient mice. J Neurochem 42, 554558.
25. Stone, WL, LeClair, I, Ponder, T, et al. (2003) Infants discriminate between natural and synthetic vitamin E. Am J Clin Nutr 77, 899906.
26. Kiyose, C, Muramatsu, R, Kameyama, Y, et al. (1997) Biodiscrimination of a-tocopherol stereoisomers in humans after oral administration. Am J Clin Nutr 65, 785789.
27. Traber, MG, Elsnerb, A & Brigelius-Floheèb, R (1998) Synthetic as compared with natural vitamin E is preferentially excreted as a-CEHC in human urine: studies using deuterated a-tocopheryl acetates. FEBS Lett 437, 145148.
28. Acuff, RV, Dunworth, RG, Webb, LW, et al. (1998) Transport of deuterium-labeled tocopherols during pregnancy. Am J Clin Nutr 67, 459464.
29. Schenker, S, Yang, Y, Perez, A, et al. (1998) Antioxidant transport by the human placenta. Clin Nutr 17, 159167.
30. Gordon, MJ, Campbell, FM & Dutta-Roy, AK (1996) a-Tocopherol-binding protein in the cytosol of the human placenta. Biochem Soc Trans 24, 2025.
31. Copp, RP, Wisniewski, T, Hentati, F, et al. (1999) Localization of a-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Res 822, 8087.
32. Zimmer, S, Stocker, A, Sarbolouki, MN, et al. (2000) A novel human tocopherol-associated protein: cloning, in vitro expression, and characterization. J Biol Chem 275, 2567225680.
33. Panagabko, C, Morley, S, Hernandez, M, et al. (2003) Ligand specificity in the CRAL-TRIO protein family. Biochemistry 42, 64676474.
34. Han, SN, Pang, E, Zingg, JM, et al. (2010) Differential effects of natural and synthetic vitamin E on gene transcription in murine T lymphocytes. Arch Biochem Biophys 495, 4955.
35. Ulatowski, LM & Manor, D (2015) Vitamin E and neurodegeneration. Neurobiol Dis 84, 7883.
36. Hosomi, A, Goto, K, Kondo, H, et al. (1998) Localization of a-tocopherol transfer protein in rat brain. Neurosci Lett 256, 159162.

Keywords

Type Description Title
WORD
Supplementary materials

Kuchan supplementary material
Table S1

 Word (24 KB)
24 KB

The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is predominant in the human infant brain

  • Matthew J. Kuchan (a1), Søren K. Jensen (a2), Elizabeth J. Johnson (a3) and Jacqueline C. Lieblein-Boff (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed