Skip to main content Accessibility help

Naturally occurring iodine in humic substances in drinking water in Denmark is bioavailable and determines population iodine intake

  • Stig Andersen (a1) (a2), Klaus M. Pedersen (a1), Finn Iversen (a3), Steen Terpling (a3), Peter Gustenhoff (a1), Steffen B. Petersen (a2) and Peter Laurberg (a1)...


Iodine intake is important for thyroid function. Iodine content of natural waters is high in some areas and occurs bound in humic substances. Tap water is a major dietary source but bioavailability of organically bound iodine may be impaired. The objective was to assess if naturally occurring iodine bound in humic substances is bioavailable. Tap water was collected at Randers and Skagen waterworks and spot urine samples were collected from 430 long-term Randers and Skagen dwellers, who filled in a questionnaire. Tap water contained 2 μg/l elemental iodine in Randers and 140 μg/l iodine bound in humic substances in Skagen. Median (25; 75 percentile) urinary iodine excretion among Randers and Skagen dwellers not using iodine-containing supplements was 50 (37; 83) μg/24 h and 177 (137; 219) μg/24 h respectively (P < 0·001). The fraction of samples with iodine below 100 μg/24 h was 85·0 % in Randers and 6·5 % in Skagen (P < 0·001). Use of iodine-containing supplements increased urinary iodine by 60 μg/24 h (P < 0·001). This decreased the number of samples with iodine below 100 μg/24 h to 67·3 % and 5·0 % respectively, but increased the number of samples with iodine above 300 μg/24 h to 2·4 % and 16·1 %. Bioavailability of iodine in humic substances in Skagen tap water was about 85 %. Iodine in natural waters may be elemental or found in humic substances. The fraction available suggests an importance of drinking water supply for population iodine intake, although this may not be adequate to estimate population iodine intake.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Naturally occurring iodine in humic substances in drinking water in Denmark is bioavailable and determines population iodine intake
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Naturally occurring iodine in humic substances in drinking water in Denmark is bioavailable and determines population iodine intake
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Naturally occurring iodine in humic substances in drinking water in Denmark is bioavailable and determines population iodine intake
      Available formats


Corresponding author

*Corresponding author: Stig Andersen, fax +45 9932 6857, email


Hide All
1Delange, F (1994) The disorders induced by iodine deficiency. Thyroid 4, 107128.
2Laurberg, P, Bulow Pedersen, I, Knudsen, N, Ovesen, L & Andersen, S. (2001) Environmental iodine intake affects the type of non-malignant thyroid disease. Thyroid 11, 457469.
3Andersen, S, Petersen, SB & Laurberg, P (2002) Iodine in drinking water in Denmark is bound in humic substances. Eur J Endocrinol 147, 663670.
4Rasmussen, LB, Ovesen, L, Bülow, I, Jørgensen, T, Knudsen, N, Laurberg, P & Perrild, H (2002) Dietary iodine intake and urinary iodine excretion in a Danish population. Br J Nutr 87, 6169.
5Andersen, S (2002) Aquatic iodine, urinary iodine and thyroid function. PhD thesis, University of Aalborg, Denmark.
6Felgentäger, HJv, Gerth, B & Fanghänel, S (1983) Der jodgehalt des trinkwassers in der DDR und seine beziehung zur endemischen struma (The impact of iodine in drinking water in DDR on endemic goitre). Deutsche Gesundheitswesen 38, 11781182.
7Pedersen, KM, Laurberg, P, Nøhr, S, Jørgensen, A & Andersen, S (1999) Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas. Eur J Endocrinol 140, 400403.
8Munkner, T (1969) Urinary excretion of 127-iodine in the Danish population. Scand J Clin Lab Invest S110, 134.
9Knudsen, N, Bülow, I, Jørgensen, T, Laurberg, P, Ovesen, L & Perrild, H (2000) Comparative study of thyroid function and types of thyroid dysfunctions in two areas in Denmark with slightly different iodine status. Eur J Endocrinol 143, 485491.
10Bülow Pedersen, I, Knudsen, N, Jorgensen, T, Perrild, H, Ovesen, L & Laurberg, P (2002) Large differences in incidences of overt hyper- and hypothyroidism associated with a small difference in iodine intake: a prospective comparative register-based population survey. J Clin Endocrinol Metab 87, 44624469.
11Jahreis, G, Hausmann, W, Kiessling, G, Franke, K & Leiterer, M (2001) Bioavailability of iodine from normal diets rich in dairy products – results of balance studies in women. Exp Clin Endocrinol Diabetes 109, 163167.
12Saikat, SQ, Carter, JE, Mehra, A, Smith, B & Stewart, A (2004) Goitre and environmental iodine in the UK-Derbyshire: a review. Environ Geochem Health 26, 395401.
13Keating, FR & Albert, A (1949) The metabolism of iodine in man as disclosed with the use of radioiodine. Rec Prog Horm Res 4, 429481.
14Aquaron, R, Delange, F, Marchal, P, Lognone, V & Ninane, L (2002) Bioavailability of seaweed iodine in human beings. Cell Mol Biol 48, 563569.
15Katamine, S, Mamiya, Y, Sekimoto, K, Hoshino, N, Totsuka, K & Suzuke, M (1987) Differences in bioavailability of iodine among iodine-rich foods and food colors. Nutr Rep Int 35, 289297.
16Thurman, EM (1985) Humic substances in groundwater. In Humic Substances in Soil, Sediment, and Water. Geochemistry, Isolation, and Characterization, pp. 87–103 [Aiken, GR, Mcknight, DM and Wershaw, RL, editors]. New York: John Wiley & Sons.
17Grøn, C, Wassenaar, L & Krog, M (1996) Origin and structures of groundwater humic substances from three Danish aquifers. Environ Int 22, 519534.
18Nissinen, TK, Miettinen, IT, Martikainen, PJ & Vartiainen, T (2001) Molecular size distribution of natural organic matter in raw and drinking waters. Chemosphere 45, 865873.
19Christensen, JV & Carlsen, L (1991) Iodinated humic acids. Lecture Notes in Earth Sciences 33, 467474.
20Moulin, V, Reiller, P, Amekraz, B & Moulin, C (2001) Direct characterization of iodine covalently bound to fulvic acids by electrospray mass spectrometry. Rapid Commun Mass Spectrom 15, 24882496.
21Santschi, PH & Schwehr, KA (2004) 129I/(127)I as a new environmental tracer or geochronometer for biogeochemical or hydrodynamic processes in the hydrosphere and geosphere: the central role of organo-iodine. Sci Total Environ 321, 257271.
22Middlesworth, LV (1985) Biologically available iodine in goitrogenic diets. Proc Soc Exp Biol Med 178, 610615.
23Harrington, RM, Shertzer, HG & Bercz, JP (1985) Effects of Clo2 on the absorption and distribution of dietary iodide in the rat. Fundam Appl Toxicol 5, 672678.
24Hurrell, RF (1997) Bioavailability of iodine. Eur J Clin Nutr 51, S1 912.
25Fordyce, FM, Johnson, CC, Navaratna, URB, Appleton, JD & Dissanayake, CB (2000) Selenium and iodine in soil, rice and drinking water in relation to endemic goitre in Sri Lanka. Sci Tot Environ 263, 127141.
26McClendon, JF & Hathaway, JC (1924) Inverse relation between iodine in food and drink and goitre, simple and exophthalmic. JAMA 82, 16681672.
27Hales, I, Reeve, T, Myhill, J & Dowda, K (1969) Goitre: seasonal fluctuations in New South Wales. Med J Australia 1, 378380.
28Amelsvoort, V (1971) Rural water-supply development and the recent appearance of endemic goitre. Trop Geogr Med 23, 304305.
29Laurberg, P, Jørgensen, T, Perrild, H, Ovesen, L, Knudsen, N, Pedersen, IB, Rasmussen, LB, Carlé, A & Vejbjerg, P (2006) The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur J Endocrinol 155, 219228.
30Andersen, NL, Fagt, S, Groth, MV, Hartkopp, HB, Møller, A, Ovesen, L & Warming, L (1996) Danskernes kostvaner 1995. Hovedresultater. (Dietary habits in Denmark in 1995. Main results). Levensmiddelstyrelsen, publikation 235, Denmark.
31Wilson, B & van Zyl, A (1967) The estimation of iodine in thyroidal amino acids by alkaline ashing. South African J Med Sci 32, 7082.
32Laurberg, P (1987) Thyroxine and 3,5,3’-triiodothyronine content of thyroglobulin in thyroid needle aspirates in hyperthyroidism and hypothyroidism. J Clin Endocrinol Metab 64, 969974.
33Andersen, S, Hvingel, B, Kleinschmidt, K, Jørgensen, T & Laurberg, P (2005) Changes in iodine excretion in 50-69-y-old denizens of an Arctic society in transition and iodine excretion as a biomarker of the frequency of consumption of traditional Inuit foods. Am J Clin Nutr 81, 656663.
34Bartels, H, Bohmer, M & Heierli, C (1972) Serum creatinine determination without protein precipitation. Clin Chim Acta 37, 193197.
35Kampmann, J, Siersbæk-Nielsen, K, Kristensen, M & Mølholm Hansen, J (1974) Rapid evaluation of creatinine clearance. Acta Med Scand 196, 517520.
36Kesteloot, H & Joossens, JV (1996) On the determinats of the creatinine clearance: a population study. J Hum Hypertens 10, 245249.
37World Health Organization (2001) Assessment of Iodine Deficiency Disorders and Monitoring their Elimination. A Guide for Programme Managers. Geneva: WHO.
38Shishkina, OV & Pavlova, GA (1965) Iodine distribution in marine and oceanic bottom muds and in their pore fluids. Geochem Int 2, 559565.
39Fuge, R (1996) Geochemistry of iodine in relation to iodine deficiency diseases. Environ Geochem Health 113, 201212.
40Sivakumar, B, Brahamam, GN, Madhavan, NK, Ranganathan, S, Vishnuvardhan, RM, Vijayaraghavan, K & Krishnaswamy, K (2001) Prospects of fortification of salt with iron and iodine. Br J Nutr 85, 167173.
41Nath, SK, Moinier, B, Tuilier, F, Rongier, M & Desjeux, JF (1992) Urinary excretion of iodide and fluoride from supplemented food grade salt. Int J Vitam Nutr Res 62, 6672.
42Gaitan, E (1983) Endemic goiter in western colombia. Ecology of Disease 2, 295308.
43Visser, SA (1973) Some biological effects of humic acids in the rat. Acta Biol Med Germanica 31, 569581.
44Jolin, T & Escobar del Rey, F (1965) Evaluation of iodine/creatinine ratios of casual samples as indices of daily urinary iodine output during field studies. J Clin Endocrinol Metab 25, 540542.
45Knudsen, N, Christiansen, E, Brandt-Christensen, M, Nygaard, B & Perrild, H (2000) Age- and sex-adjusted iodine/creatinine ratio. A new standard in epidemiological surveys? Evaluation of three different estimates of iodine excretion based on casual urine samples and comparison to 24 h values. Eur J Clin Nutr 54, 361363.
46Andersen, S, Pedersen, KM, Pedersen, IB & Laurberg, P (2001) Variations in urinary iodine excretion and thyroid function. A one year study in healthy men. Eur J Endocrinol 144, 461465.
47Gaitan, E (1990) Goitrogens in food and water. Ann Review Nutr 10, 2135.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed