Skip to main content Accessibility help
×
Home

Moderate whisky consumption in combination with an evening meal reduces tryptophan availability to the brain but does not influence performance in healthy volunteers

  • C. Rob Markus (a1) (a2), Aafje Sierksma (a3) (a4), Cees Verbeek (a5), Jan J. M. van Rooijen (a5), Hamina J. Patel (a6), A. Nico Brand (a7) and Henk F. J. Hendriks (a3)...

Abstract

Brain serotonin (5-HT) synthesis is controlled by nutrients that influence the availability of plasma tryptophan (Trp) as compared with the sum of the other large neutral amino acids (LNAA; Trp:LNAA). Alcohol consumption is found to change mood and performance and this might well be due to alterations in the plasma Trp:LNAA ratio and brain 5-HT. In the present study, we tested whether whisky consumption as part of a meal may alter the plasma Trp:LNAA ratio and influence mood and performance in healthy volunteers. Twenty-four healthy male subjects participated in a within-subjects cross-over study. Subjects consumed whisky (125ml; 40g alcohol) or water (125ml) as part of a standard evening meal. Effects of whisky consumption were tested on mood and choice reaction time and blood samples were taken to measure changes in plasma amino acids, glucose and insulin. The plasma Trp:LNAA ratio showed a significant decline 2h after whisky consumption of alcohol (P<0·001). No effects were found on choice reaction time or mood as compared with the control condition. The present findings reveal that whisky consumption alters available plasma Trp for uptake into the brain, whereas there were no effects on mood and performance.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Moderate whisky consumption in combination with an evening meal reduces tryptophan availability to the brain but does not influence performance in healthy volunteers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Moderate whisky consumption in combination with an evening meal reduces tryptophan availability to the brain but does not influence performance in healthy volunteers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Moderate whisky consumption in combination with an evening meal reduces tryptophan availability to the brain but does not influence performance in healthy volunteers
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr C. R. Markus, fax +31 43 3884199, email, R.Markus@psychology.unimaas.nl

References

Hide All
Altman, HJ & Normile, HJ (1998) What is the nature of the role of the serotonergic nervous system in learning and memory: prospects for development of an effective treatment strategy for senile dementia. Neurobiol Aging 9, 627638.
Badawy, AAB (1996) Tryptophan metabolism and disposition in relation to alcohol and alcoholism. Adv Exp Med Biol 398, 7582.
Badawy, AAB, Morgan, CJ, Lovett, JWT, Bradley, DM & Thomas, DR (1995) Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression. Pharmacopsychiatry 28, 9397.
Badawy, AAB, Morgan, CJ, Thomas, DR & Lovett, JWT (1987) The acute effects of ethanol on the serum concentrations of tryptophan and other constituents in fasting normal male volunteers. Ann Clin Biochem 24, S1-63–S1-65.
Bellisle, F, Blundell, JE, Dye, L, Fantino, M, Fletcher, RJ, Lambert, J, Roberfroid, M, Specter, S, Westenhöfer, J & Westerterp-Plantenga, MS (1998) Functional food science and behaviour and psychological functions. Br J Nutr 80, S173S193.
Brand, AN (1999) MINDS: tool for research in health psychology and neuropsychology. In Cognitive Ergonomics, Clinical Assessment and Computer-assisted Learning, pp. 155168 [Brinker, BPLM den, Beek, PJ, Brand, AN and Maarse, FJ, Mulder, LJM, editors]. The Netherlands: Swets & Zeitlinger.
Curzon, G (1985) Effects of food intake on brain transmitter amine precursors and amine synthesis. In Psychopharmacology and Food, pp. 5970 [Sandler, M and Silverstone, T, editors]. Oxford: Oxford University Press.
Eckardt, MJ, File, SE, Gessa, GL, Grant, KA, Guerri, C, Hoffman, PL, Kalant, H, Koob, GF, Li, TK & Tabakoff, B (1998) Effects of moderate alcohol consumption on the central nervous system. Alcohol Clin Exp Res 22, 9981040.
Fernstrom, JD & Wurtman, RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178, 414416.
Hendriks, FJ, Veenstra, J, van Tol, A, Groener, JEM & Schaafsma, G (1998) Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition. Alcohol Alcohol 4, 403410.
Koelega, HS (1995) Alcohol and vigilance performance: a review. Psychopharmacology 118, 233249.
LeMarquand, D, Pihl, RO & Benkelfat, C (1994) Serotonin and alcohol intake, abuse, and dependence: findings of animal studies. Biol Psychiatry 36, 395421.
Liguori, A, D'Agostino, RB, Dworkin, SI, Edwards, D & Robinson, JH (1999) Alcohol effects on mood, equilibrium and simulated driving. Alcohol Clin Exp Res 23, 815821.
Lloyd, HM & Rogers, PJ (1997) Mood and cognitive performance improved by a small amount of alcohol given with a lunchtime meal. Behav Pharmacol 8, 188195.
McNair, DM, Lorr, M & Dropleman, LF (1971) EITS Manual – Profile of Mood States. San Diego, CA: Educational and Testing Service.
Maes, M & Meltzer, H (1995) The serotonin hypothesis of major depression. In Psychopharmacology: the Fourth Generation of Progress, pp. 933944 [Bloom, FE and Kupfer, DJ, editors]. New York: Raven Press.
Markus, CR, Olivier, B & de Haan, EHF (2002) Whey protein rich in alpha-lactalbumin increases the plasma Trp/LNAA ratio and improves cognitive performance in stress-vulnerable subjects. Am J Clin Nutr 75, 10511056.
Markus, CR, Olivier, B, Panhuysen, G, Van der Gugten, J, Alles, M, Tuiten, A, Westenberg, HGM, Fekkes, D & Koppeschaar, H (2000) The bovine protein alpha-lactalbumin increases the plasma Trp/LNAA ratio, and in vulnerable subjects raises brain serotonin activity and decreases cortisol and mood under stress. Am J Clin Nutr 71, 15361544.
Markus, CR, Panhuysen, G, Tuiten, A, Koppeschaar, H, Fekkes, D & Peters, M (1998) Does carbohydrate-rich, protein-poor food prevent a deterioration of mood and cognitive performance of stress-prone subjects when subjected to a stressful task?. Appetite 31, 4965.
Maylor, EA, Rabbitt, PMA, James, GH & Kerr, SA (1992) Effects of alcohol, practice and task complexity on reaction time distributions. Q J Exp Psychol 44, 119139.
Maylor, EA, Rabbitt, PMA, Sahgal, A & Wright, C (1987) Effects of alcohol on speed and accuracy in choice reaction time and visual search. Acta Psychol (Amst) 65, 147163.
Morgan, CJ & Badawy, AAB (2001) Alcohol-induced euphoria: exclusion of serotonin. Alcohol Alcohol 36, 2225.
Rosenthal, NE, Genhart, MJ, Caballero, B, Jacobsen, FM, Skwerer, RG, Coursey, RD, Rogers, S & Spring, B (1989) Psychobiological effects of carbohydrate- and protein-rich meals in patients with seasonal affective disorder and normal controls. Biol Psychiatry 25, 10291040.
Sierksma, A, van der, Gaag, S, van, Tol, A, James, RW & Hendriks, HFJ (2002) Kinetics of HDL cholesterol and paraoxonase activity in moderate alcohol consumers. Alcohol Clin Exp Res 26, 14301435.
Sternberg, S (1969) Memory-scanning: mental processes revealed by reaction-time experiments. Am Sci 57, 421457.
Sternberg, S (1975) Memory scanning: new findings and current controversies. Q J Exp Psychol 27, 132.

Keywords

Moderate whisky consumption in combination with an evening meal reduces tryptophan availability to the brain but does not influence performance in healthy volunteers

  • C. Rob Markus (a1) (a2), Aafje Sierksma (a3) (a4), Cees Verbeek (a5), Jan J. M. van Rooijen (a5), Hamina J. Patel (a6), A. Nico Brand (a7) and Henk F. J. Hendriks (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed