Skip to main content Accessibility help
×
Home

Metabolomics: an emerging post-genomic tool for nutrition

  • Phillip D. Whitfield (a1), Alexander J. German (a2) and Peter-John M. Noble (a2)

Abstract

The post-genomic era has been driven by the development of technologies that allow the function of cells and whole organisms to be explored at the molecular level. Metabolomics is concerned with the measurement of global sets of low-molecular-weight metabolites. Metabolite profiles of body fluids or tissues can be regarded as important indicators of physiological or pathological states. Such profiles may provide a more comprehensive view of cellular control mechanisms in man and animals, and raise the possibility of identifying surrogate markers of disease. Metabolomic approaches use analytical techniques such as NMR spectroscopy and MS to measure populations of low-molecular-weight metabolites in biological samples. Advanced statistical and bioinformatic tools are then employed to maximise the recovery of information and interpret the large datasets that are generated. Metabolomics has already been used to study toxicological mechanisms and disease processes and offers enormous potential as a means of investigating the complex relationship between nutrition and metabolism. Examples include the metabolism of dietary substrates, drug-induced disturbances of lipid metabolites in type 2 diabetes mellitus and the therapeutic effects of vitamin supplementation in the treatment of chronic metabolic disorders.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Metabolomics: an emerging post-genomic tool for nutrition
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Metabolomics: an emerging post-genomic tool for nutrition
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Metabolomics: an emerging post-genomic tool for nutrition
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr P. D. Whitfield, fax +44 151 794 4243, email pdw01@liv.ac.uk

References

Hide All
Aharoni, A, Ric, de, Vos, CH, Verhoeven, HA, Maliepaard, CA, Kruppa, G, Bino, R & Goodenowe, DB (2002) Non-targeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 6, 217234.
Allen, J, Davey, HM, Broadhurst, D, Heald, JK, Rowland, JJ, Oliver, SG & Kell, DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21, 692696.
Beckwith-Hall, BM, Nicholson, JK, Nicholls, A, Nicholls, AW, Foxall, PJ, Lindon, JC, Connor, SC, Abdi, M, Connelly, J & Holmes, E (1998) Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three hepatotoxins. Chem Res Toxicol 11, 260272.
Brindle, JT, Antti, H & Holmes, E (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1 H-NMR-based metabonomics. Nat Med 8, 14391444.
Clayton, PT (2001) Applications of mass spectrometry in the study of inborn errors of metabolism. J Inherit Metab Dis 24, 139150.
Elliott, R & Ong, TJ (2002) Nutritional genomics. BMJ 324, 14381442.
Fiehn, O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48, 155171.
Fiehn, O, Kloska, S & Altmannn, T (2001) Integrated studies on plant biology using multiparallel techniques. Curr Opin Biotechnol 12, 8286.
Fiehn, O, Kopka, J, Dormann, P, Altmann, T, Trethewey, RN & Willmitzer, L (2000 a) Metabolite profiling for plant functional genomics. Nat Biotechnol 18, 11571161.
Fiehn, O, Kopka, J, Trethewey, RN & Willmitzer, L (2000 b) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72, 35733580.
Gavaghan, CL, Holmes, E, Lenz, E, Wilson, ID & Nicholson, JK (2000) An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk: ApfCD mouse. FEBS Lett 484, 169174.
German, JB, Roberts, MA & Watkins, SM (2003 a) Genomics and metabolomics as markers for the interaction of diet and health: lessons from lipids. J Nutr 133, 2078S2083S.
German, JB, Roberts, MA & Watkins, SM (2003 b) Personal metabolomics as a next generation nutritional assessment. J Nutr 133, 42604266.
Glassbrook, N & Ryals, J (2001) A systemic approach to biochemical profiling. Curr Opin Plant Biol 4, 186190.
Go, VL, Butrum, RR & Wong, DA (2003) Diet, nutrition and cancer prevention: the postgenomic era. J Nutr 133, 3830S3836S.
Goodacre, R, Vaidyanathan, S, Dunn, WB, Harrigan, GG & Kell, DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22, 245252.
Griffin, JL (2004) Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr Opin Chem Biol 7, 648654.
Griffin, JL, Muller, D, Woograsingh, R, Jowatt, V, Hindmarsh, A, Nicholson, JK & Martin, JE (2002) Vitamin E deficiency and metabolic deficits in neuronal ceroid lipofuscinosis described by bioinformatics. Physiol Genomics 11, 195203.
Griffiths, JR, McSheehy, PM, Robinson, SP, Troy, H, Chung, YL, Leek, RD, Williams, KJ, Stratford, IJ, Harris, AL & Stubbs, M (2002) Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1β (HIF-1β): evidence of an anabolic role for the HIF-1 pathway. Cancer Res 62, 688695.
Griffiths, JR & Stubbs, M (2003) Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv Enzyme Regul 43, 6776.
Han, X & Gross, RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44, 10711079.
Hellerstein, MK (2003) In vivo measurement of fluxes through metabolic pathways: the missing link in functional genomics and pharmaceutical research. Annu Rev Nutr 23, 379402.
Hellerstein, MK (2004) New stable isotope-mass spectrometric techniques for measuring fluxes through intact metabolic pathways in mammalian systems: introduction of moving pictures into functional genomics and biochemical phenotyping. Metab Eng 6, 85100.
Holmes, E & Antti, H (2002) Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst 127, 15491557.
Idborg-Bjorkman, H, Edlund, PO, Kvalheim, OM, Schuppe-Koistinen, I & Jacobsson, SP (2003) Screening of biomarkers in rat urine using LC/electrospray ionisation-MS and two-way data analysis. Anal Chem 75, 47844792.
Jonsson, P, Gullberg, J, Nordstrom, A, Kusano, M, Kowalczyk, M, Sjostrom, M & Moritz, T (2004) A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem 76, 17381745.
Kell, DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7, 296307.
Kuiper, HA, Kleter, GA, Noteborn, HP & Kok, EJ (2001) Assessment of the food safety issues relating to genetically modified foods. Plant J 27, 503528.
Lamers, RJ, DeGroot, J, Spies-Faber, EJ (2003) Identification of disease- and nutrient-related metabolic fingerprints in osteoarthritic guinea pigs. J Nutr 133, 17761780.
Lenz, EM, Bright, J, Knight, R, Wilson, ID & Major, H (2004) Cyclosporin A-induced changes in endogenous metabolites in rat urine: a metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics. J Pharm Biomed Anal 35, 599608.
Lindon, JC, Holmes, E & Nicholson, JK (2003 a) So what's the deal with metabonomics?. Anal Chem 75, 384A391A.
Lindon, JC, Nicholson, JK & Holmes, E (2003 b) The role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol Appl Pharmacol 187, 137146.
Mendes, P (2002) Emerging bioinformatics for the metabolome. Brief Bioinform 3, 134145.
Milner, JA (2003) Incorporating basic nutrition science into health interventions for cancer prevention. J Nutr 133, 3820S3826S.
Nicholls, AW, Holmes, E, Lindon, JC, Shockcor, JP, Farrant, RD, Haselden, JN, Damment, SJ, Waterfield, CJ & Nicholson, JK (2001) Metabonomic investigations into hydrazine toxicity in the rat. Chem Res Toxicol 14, 975987.
Nicholson, JK, Connelly, J, Lindon, JC & Holmes, E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1, 153161.
Nicholson, JK, Lindon, JC & Holmes, E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 11811189.
Nicholson, JK & Wilson, ID (2003) Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2, 668676.
Ordovas, JM & Mooser, V (2004) Nutrigenomics and nutrigenetics. Curr Opin Lipidol 15, 101108.
Pham-Tuan, H, Kashavelis, L, Daykin, CA & Janssen, HG (2003) Method development in high-performance liquid chromatography for high throughput profiling and metabonomic studies of biofluid samples. J Chromatogr 789, 283301.
Plumb, RS, Stumpf, CL, Gorenstein, MV, Castro-Perez, JM, Dear, GJ, Anthony, M, Sweatman, BC, Connor, SC & Haselden, JN (2002) Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun Mass Spectrom 16, 19911996.
Plumb, RS, Stumpf, CL, Granger, JH, Castro-Perez, J, Haselden, JN & Dear, GJ (2003) Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun Mass Spectrom 17, 26322638.
Raamsdonk, LM, Teusink, B & Broadhurst, D (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19, 4550.
Rashed, MS (2001) Clinical applications of tandem mass spectrometry: ten years of diagnosis and screening for inherited metabolic diseases. J Chromatogr 758, 2748.
Reo, NV (2002) NMR-based metabolomics. Drug Chem Toxicol 25, 375382.
Roessner, U, Luedemann, A, Brust, D, Fiehn, O, Linke, T, Willmitzer, L & Fernie, A (2001) Metabolite profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 1129.
Shockcor, JP & Holmes, E (2002) Metabonomic applications in toxicity screening and disease diagnosis. Curr Top Med Chem 2, 3551.
Solanky, KS, Bailey, NJ, Beckwith-Hall, BM, Davis, A, Bingham, S, Holmes, E, Nicholson, JK & Cassidy, A (2003) Application of biofluid 1 H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem 323, 197204.
Su, X, Han, X, Yang, J, Mancuso, DJ, Chen, J, Bickel, PE & Gross, RW (2004) Sequential ordered fatty acid α oxidation and Δ9 desaturation are major determinants of lipid storage and utilization in differentiating adipocytes. Biochemistry 43, 50335044.
Sumner, LW, Mendes, P & Dixon, RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817836.
Teague, C, Holmes, E, Maibaum, E, Nicholson, J, Tang, H, Chan, Q, Elliott, P & Wilson, I (2004) Ethyl glucoside in human urine following dietary exposure: detection by 1 H NMR spectroscopy as a result of metabonomic screening in humans. Analyst 129, 259264.
Trethewey, RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7, 196201.
van Ommen, B (2004) Nutrigenomics: exploiting systems biology in the nutrition and health area. Nutrition 20, 48.
Waters, NJ, Holmes, E, Waterfield, CJ, Farrant, RD & Nicholson, JK (2002) NMR and pattern recognition studies on liver extracts and in livers from rats treated with alpha-naphthylisothiocyanate. Biochem Pharmacol 64, 6777.
Watkins, SM & German, JB (2002) Toward the implantation of metabolomic assessments of human health and nutrition. Curr Opin Biotechnol 13, 512516.
Watkins, SM, Hammock, BD, Newman, JW & German, JB (2001) Individual metabolism should guide agriculture towards foods for improved health and nutrition. Am J Clin Nutr 74, 283286.
Watkins, SM, Reifsnyder, PR, Pan, HJ, German, JB & Leiter, EH (2002) Lipid metabolome-wide effects of the PPARγ agonist rosiglitazone. J Lipid Res 43, 18091817.
Weckwerth, W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54, 669689.
Weckwerth, W & Fiehn, O (2002) Can we discover novel pathways using metabolomic analysis?. Curr Opin Biotechnol 13, 156160.
Weckwerth, W, Loureiro, ME, Wenzel, K & Fiehn, O (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc Natl Acad Sci USA 101, 78097814.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed