Skip to main content Accessibility help
×
Home

Metabolism of the soyabean isoflavone glycoside genistin in vitro by human gut bacteria and the effect of prebiotics

  • Toni E. Steer (a1), Ian T. Johnson (a2), Jennifer M. Gee (a2) and Glenn R. Gibson (a1)

Abstract

The isoflavone genistein is found predominantly in soyabeans and is thought to possess various potent biological properties, including anti-carcinogenic effects. Studies have shown that genistein is extensively degraded by the human gut microflora, presumably with a loss of its anti-carcinogenic action. The aim of the present study was to investigate the potential of a prebiotic to divert bacterial metabolism away from genistein breakdown: this may be of benefit to the host. Faecal samples were obtained from healthy volunteers and fermented in the presence of a source of soyabean isoflavones (Novasoy™ (10g/l); ADM Neutraceuticals, Erith, Kent, UK). Bacterial genera of the human gut were enumerated using selective agars and genistein was quantified by HPLC. The experiment was repeated with the addition of glucose (10g/l) or fructo-oligosaccharide (10g/l; FOS) to the fermentation medium. The results showed most notably that counts of Bifidobacterium spp. and Lactobacillus spp. were significantly increased (P<0·05 and P<0·01 respectively) under steady-state conditions in the presence of FOS. Counts of Bacteroides spp. and Clostridium spp. were, however, both significantly reduced (P<0·05) during the fermentation. A decline in genistein concentration by about 52 and 56% over the 120h culture period was observed with the addition of glucose or FOS to the basal medium (P<0·01), compared with about 91% loss of genistein in the vessels containing Novasoy™ (ADM Neutraceuticals) only. Similar trends were obtained using a three-stage chemostat (gut model), in which once again the degradation of genistein was about 22% in vessel one, about 24% in vessel two and about 26% in vessel three in the presence of FOS, compared with a degradation of genistein of about 67% in vessel one, about 95% in vessel two and about 93% in vessel three in the gut model containing Novasoy™ (ADM Neutraceuticals) only. The present study has shown that the addition of excess substrate appeared to preserve genistein in vitro. In particular, the use of FOS not only augmented this effect, but also conferred an additional benefit in selectively increasing numbers of purportedly beneficial bacteria such as bifidobacteria and lactobacilli.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Metabolism of the soyabean isoflavone glycoside genistin in vitro by human gut bacteria and the effect of prebiotics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Metabolism of the soyabean isoflavone glycoside genistin in vitro by human gut bacteria and the effect of prebiotics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Metabolism of the soyabean isoflavone glycoside genistin in vitro by human gut bacteria and the effect of prebiotics
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Glenn R. Gibson, fax +44 118 935 7222, email g.r.gibson@reading.ac.uk

References

Hide All
Adlercreutz, H (1995) Phytoestrogens: epidemiology and a possible role in cancer protection. Environ Health Perspect 103, 103112.
Buddington, RK, Williams, CH, Chen, SC & Witherly, SA (1996) Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. Am J Clin Nutr 63, 709716.
Cassidy, A (1999) Dietary photoestrogens potential anti-cancer agents? Br Nutr Foundation Nutr Bull 24, 2230.
Chang, YC & Nair, MG (1995) Metabolism of diadzein and genistein by intestinal bacteria. J Nat Prod 58, 18921896.
Day, AJ, Canada, FJ, Diaz, JC, et al. (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468, 166170.
Day, AJ, DuPont, MS, Ridley, S, et al. (1998) Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett 425, 7175.
De Boever, P, Deplancke, B & Verstraete, W (2000) Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J Nutr 130, 25992606.
Friend, DR & Chang, GW (1984) A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem 27, 261266.
Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.
Griffiths, LA & Smith, GE (1972) Metabolism of apigenin and related compounds in the rat. Biochem J 128, 901911.
Hawksworth, G, Drasar, BS & Hill, MJ (1971) Intestinal bacteria and the hydrolysis of glycosidic bonds. J Med Microbiol 4, 451459.
Hidaka, H, Eida, T, Takizawa, T, Tokunaga, T & Tashiro, Y (1986) Effects of fructooligosaccharides on intestinal flora and human health. Bifido Microflora 5, 3750.
Hur, HG, Lay, JO, Beger, RD, Freeman, JP & Rafii, F (2000) Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Arch Microbiol 174, 422428.
Kim, HD, Yu, KU, Bae, EA & Han, JM (1998) Metabolism of puerarin and daidzein by human intestinal bacteria and their relation to in vitro cytotoxicity. Biol Pharm Bull 21, 628630.
Mitsuoka, T, Hidaka, H & Eida, T (1987) Effect of fructooligo-saccharides on intestinal microflora. Nahrung 31, 426436.
Murphy, PA, Song, TT, Buseman, G & Barua, K (1997) Isoflavones in soy based infant formulas. J Agric Food Chem 45, 46384653.
Rumney, CJ & Rowland, IR (1992) In vivo and in vitro models of the human colonic flora. Curr Rev Food Sci Nutr 31, 299331.
Schoefer, L, Mohan, R, Braune, A, Birringer, M & Blaut, M (2002) Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiol Lett 208, 197202.
Setchell, KDR (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68, 1333S1345S.
Setchell, KDR, Brown, NM, Desai, P, et al. (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavones supplements. J Nutr 131, 1362S1375S.
Wang, HJ & Murphy, PA (1994) Isoflavone content of commercial soybean foods. J Agric Food Chem 42, 16661673.
Williams, CH, Witherly, SA & Buddington, RK (1994) Influence of dietary neosugar on selected bacterial groups of the human faecal microbiota. Microb Ecol Health Dis 7, 9197.
Xu, XM & Thomas, ML (1995) Estrogen receptor-mediated direct stimulation of colon cancer cell growth in vitro. Mol Cell Endocrinol 105, 197201.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed