Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-26T04:25:41.215Z Has data issue: false hasContentIssue false

Measurement of the bacterial nitrogen entering the duodenum of the ruminant using diaminopimelic acid as a marker

Published online by Cambridge University Press:  09 March 2007

K. Hutton
Affiliation:
Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford
F. J. Bailey
Affiliation:
Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford
E. F. Annison
Affiliation:
Unilever Research Laboratory, Colworth House, Sharnbrook, Bedford
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A technique for the separation and colorimetric estimation of 2, 4-diaminopimelic acid (DAP) using automated ion-exchange chromatography coupled with an acid ninhydrin detection system is described.

2. Only traces of DAP were found in rumen protozoa and no DAP was detected in rumen fluid prepared by ultracentrifugation or dialysis.

3. The concentration of DAP in rumen bacteria from sheep on a constant feeding regimen, and the ratio of nitrogen to DAP for these bacteria were found to be constant over a 3-month period.

4. The method has proved suitable for the estimation of bacterial N in the duodenal digesta of ruminants.

5. The contribution of bacterial N to the total N leaving the abomasum of a lactating cow fitted with a permanent re-entrant cannula in the duodenum was found to be 50%.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1971

References

REFERENCES

Agricultural Research Council (1965). The Nutrient Requirements of Farm Livestock. No. 2. Ruminants. London: Agricultural Research Council.Google Scholar
Bergen, W. G., Purser, D. B. & Cline, J. H. (1967). J. Nutr. 92, 357.Google Scholar
Bergen, W. G., Purser, D. B. & Cline, J. H. (1968). J. Dairy Sci. 51, 1698.CrossRefGoogle Scholar
Chalmers, M. I., Cuthbertson, D. P. & Synge, R. L. M. (1954). J. agric. Sci., Camb. 44, 254.Google Scholar
Chalmers, M. I., Jayasinghe, J. B. & Marshall, S. B. M. (1964). J. agric. Sci., Camb. 63, 283.Google Scholar
Chinard, F. P. (1952). J. biol. Chem. 199, 91.Google Scholar
Conrad, H. R., Miles, R. C. & Butdorf, J. (1967). J. Nutr. 91, 337.Google Scholar
el-Shazly, K. & Hungate, R. E. (1966). Appl. Microbiol. 14, 27.Google Scholar
Ely, D. G., Little, C. O., Woolfolk, P. G. & Mitchell, G. E. (1967). J. Nutr. 91, 314.Google Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Hamilton, P. B. (1963). Analyt. Chem. 35, 2055.CrossRefGoogle Scholar
Hendrickx, H. (1962). C. r. Rech. Inst. Encour. Rech. scient. Ind. Agric. 28, 65.Google Scholar
Hill, F. W. & Anderson, D. L. (1958). J. Nutr. 64, 578.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. London: Academic Press Inc.Google Scholar
Leroy, F., Zelter, S. Z. & Francois, A. C. (1964). C. r. hebd. Séanc. Acad. Sci., Paris 259, 1592.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 15.CrossRefGoogle Scholar
McDonald, I. W. (1954). Biochem. J. 56, 120.Google Scholar
McDonald, I. W. & Hall, R. J. (1957). Biochem. J. 67, 400.Google Scholar
McNaught, M. L., Smith, J. A. B., Henry, K. M. & Kon, S. K. (1950). Biochem. J. 4, 32.Google Scholar
McNaught, M. L., Owen, E. C., Henry, K. M. & Kon, S. K. (1954). Biochem. J. 56, 151.Google Scholar
Newton, G. G. F., Abraham, E. P. & Berridge, N. J. (1953). Nature, Lond. 171, 606.Google Scholar
Purser, D. B. & Beuchler, S. M. (1966). J. Dairy Sci. 49, 81.Google Scholar
Reis, P. J. & Tunks, D. A. (1969). Aust. J. agric. Res. 20, 775.CrossRefGoogle Scholar
Roberts, S. A. & Miller, E. L. (1969). Proc. Nutr. Soc. 28, 32A.Google Scholar
Rogers, C. J., Chambers, C. W. & Clarke, N. A. (1967). Analyt. Biochem. 20, 321.Google Scholar
Sen, N. P., Somers, E. & O'Brien, R. C. (1968). Analyt. Biochem. 26, 457.Google Scholar
Sen, N. P., Somers, E. & O'Brien, R. C. (1969). Analyt. Biochem. 28, 345.Google Scholar
Sherrod, L. B. & Tillman, A. D. (1962). J. Anim. Sci. 21, 901.Google Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1190.Google Scholar
Smith, R. H. (1969). J. Dairy Res. 36, 313.CrossRefGoogle Scholar
Synge, R. L. M. (1953). J. gen. Microbiol. 9, 407.Google Scholar
Tagari, H., Ascarelli, I. & Bondi, A. (1962). Br. J. Nutr. 16, 237.Google Scholar
Tagari, H., Henis, Y., Tamir, M. & Volcani, R. (1965). Appl. Microbiol. 13, 437.Google Scholar
Virtanen, A. I. (1967). Ned. Melk-en Zuiveltijdschr. 21, 223.Google Scholar
Walker, D. J. & Nader, C. J. (1968). Appl. Microbiol. 16, 1124.Google Scholar
Weller, R. A., Gray, F. V. & Pilgrim, A. F. (1958). Br. J. Nutr. 12, 421.Google Scholar
Whitelaw, F. G., Preston, T. R. & Dawson, G. S. (1961). Anim. Prod. 3, 127.Google Scholar
Work, E. (1950). Nature, Lond. 165, 74.Google Scholar
Work, E. (1957). Biochem. J. 67, 416.Google Scholar
Work, E. & Dewey, D. L. (1953). J. gen. Microbiol. 9, 394.Google Scholar
Wright, D. E. & Hungate, R. E. (1967). Appl. Microbiol. 15, 148.Google Scholar
Zelter, S. Z., Leroy, F. & Tissier, J. P. (1970). Annls Biol. anim. Biochim. Biophys. 10, 111.CrossRefGoogle Scholar