Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T02:35:02.041Z Has data issue: false hasContentIssue false

The measurement of exchangeable pools of zinc using the stable isotope 70Zn

Published online by Cambridge University Press:  09 March 2007

Susan J. Fairweather-Tait
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA
Malcolm J. Jackson
Affiliation:
Department of Medicine, University of Liverpool, Liverpool L69 3BX
Thomas E. Fox
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA
S. Gabrielle Wharf
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA
John Eagles
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA
Peter C. Croghan
Affiliation:
School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study was designed to assess the feasibility of using small doses of a stable isotope of Zn to follow plasma kinetics over a 10 d period and, hence, make deductions about Zn turnover and body pool sizes. At the beginning of the 10 d metabolic balance, two adults, consuming their habitual diet, were given an intravenous injection of 70Zn. There was a fourfold difference in the administered dose between the two subjects (0·445 and 2·078 mg). Blood samples were taken at regular intervals and plasma enrichment with 70Zn measured by thermal ionization mass spectrometry. Urine and faeces were collected and analysed for Zn and 70Zn. Kinetic analysis of the plasma 70Zn decay by several different methods was undertaken. It was apparent from both deconvolution analysis of the short-term (0–90 min) decay data and four-compartment modelling of the longer-term (0–24 h) data that isotopic Zn very rapidly equilibrates with the plasma Zn and with a rapidly exchanging non-plasma pool, probably located within the liver. This latter pool appears to contain less than 10 mg Zn and the peak of isotope enrichment occurs at about 20 min post injection. The later decay of plasma Zn enrichment appears to be dictated by exchange with a much larger pool of approximate size 350 mg.

Type
Exchangeable Pools of Zinc
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Aggett, P. J. (1991). Diagnostic value of measurements for trace elements. in Infantile Nutrition – An Update, pp. 5365, [Di Toro, R., editor]. Basel: Karger.Google Scholar
Chesters, J. K. & Will, M. (1981). Zinc transport proteins in plasma. British Journal of Nutririon 46, 111118.CrossRefGoogle ScholarPubMed
Eagles, J., Fairweather-Tait, S. J., Portwood, D. E., Self, R., Gotz, A. & Heumann, G. (1989). Comparison of fast atom bombardment mass spectrometry and thermal ionization qnadrupole mass spectrometry for the measurement of zinc absorption in human nutrition studies. Analytical Chemistry 61, 10231025.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Fox, T. E., Wharf, S. G., Eagles, J. & Kennedy, H. (1992). Zinc absorption in adult men from a chicken sandwich made with white or wholemeal bread, measured by a double-label stable-isotope technique. British Journal of Nutrition 67, 411419.CrossRefGoogle ScholarPubMed
Foster, D. M., Aamodt, R. L., Henkin, R. I. & Berman, M. (1979). Zinc metabolism in humans: a kinetic model. American Journal of Physiology 237, R340–R349.Google ScholarPubMed
Fox, T. E., Fairweather-Tait, S. J., Eagles, J. & Wharf, S. G. (1991). Intrinsic labelling of different foods with stable isotopes of zinc (67Zn) for use in bioavailability studies. British Journal of Nutrition 66, 5763.CrossRefGoogle ScholarPubMed
Friel, J. K., Naake, V. L., Miller, L. V., Fennessey, P. V. & Hambidge, K. M. (1992). The analysis of stable isotopes in urine to determine the fractional absorption of zinc. American Journal of Clinical Nutrition 55, 473477.CrossRefGoogle ScholarPubMed
Garretts, M. & Molokhia, M. (1977). Acrodermatitis enteropathica without hypozincaemia. Journal of pediatrics 91, 492494.CrossRefGoogle Scholar
Gibson, R. S. (1989). Assessment of trace element status in humans. Progress in Food and Nutrition Science 13, 67111.Google ScholarPubMed
Jackson, M. J. (1989). Physiology of zinc: general aspects. In Zinc in Human Biology, pp. 114, [Mills, C. F., editor]. London: Springer-Verlag.Google Scholar
Jackson, M. J., Giugliano, R., Giugliano, L. G., Oliveira, E. F., Shrimpton, R. & Swainbank, I. G. (1988). Stable isotope metabolic studies of zinc nutrition in slum-dwelling lactating women in the Amazon valley. British Journal of Nutrition 59, 193203.CrossRefGoogle ScholarPubMed
Janghorbani, M., Kasper, L. J. & Young, V. R. (1984). Dynamics of selenite metabolism in young men: studies with the stable tracer method. American Journal of Clinical Nutrition 40, 208218.CrossRefGoogle ScholarPubMed
Johnson, P. E., Vanderpool, R. A., Milne, S. K., Mahajan, S. K., Prasad, A. S. & Mullen, L. K. (1991). Stable isotope studies of experimental zinc deficiency in adult men. In Trace Elements in Man and Animals, vol. 7, pp. 46 4–7, [Momcilovic, B., editor]. Zagreb: IMI.Google Scholar
Lentner, C. (1984). Geigy Scientific Tables, p. 66, Basle: Ciba-Geigy.Google Scholar
Lowe, N. M., Bremner, I. & Jackson, M. J. (1991). Plasma 65Zn kinetics in the rat. British Journalof Nututrition 65, 445455.CrossRefGoogle ScholarPubMed
Lowe, N. M., Rhodes, J. M., Green, A. & Jackson, M. J. (1992). Stable isotope studies of short-term plasma zinc kinetics in normal human subjects. Proceedings of Nutrition Society 51, 59A.Google Scholar
Miller, L. V., Fennessey, P. V., Friel, J. K., Hong, Z., Naake, V. L., Westcott, J. L. & Hambidge, K. M. (1991). Measurement of an exchangeable pool of zinc by analysis of stable isotope tracer in plasma and urine. FASEB Journal 5, A921.Google Scholar
Payne, R. W., Lane, P. W., Ainsley, A. E., Bicknell, K. E., Digby, P. G. N., Harding, S. A., Leech, P. K., Simpson, H. R., Todd, A. D., Verrier, P. J., White, R. P., Gower, J. C., Tunnicliffe-Wilson, G. & Patterson, L. J. (1987). GENSTAT 5 Reference Manual. Oxford: Clarendon Press.Google Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for ‘in vivo’ Kinetics. New York: Academic Press.Google Scholar
Tomlinson, J., Bannister, S. C., Croghan, P. C. & Duncan, G. (1991). Analysis of rat lens 45Ca2+ fluxes: evidence for Na+-Ca2+ exchange. Experimental Eye Research 52, 619627.CrossRefGoogle ScholarPubMed
Turnlund, J. R. & Keyes, W. R. (1990). Automated analysis of stable isotopes of zinc, copper, iron, calcium and magnesium by thermal ionisation mass spectrometry using double isotope dilution for tracer studies in humans. Journal of Micronutrient Analysis 7, 117145.Google Scholar
Wastney, M. E., Aamodt, R. L., Rumble, W. F. & Henkin, R. I. (1986). Kinetic analysis of zinc metabolism and its regulation in normal humans. American Journal of Physiology 251, R398–R408.Google ScholarPubMed
YuniceA. A,. A. A,., King, R. W., Kraikitpanitch, S., Haygood, C. C. & Lindeman, R. D. (1978). Urinary zinc excretion following infusions of zinc sulphate, cysteine, histidine, or glycine. American Journal of Physiology 235, F40 F45.Google ScholarPubMed