Skip to main content Accessibility help
×
Home

Measurement and prediction of digestible energy values in feedstuffs for the herbivorous fish tilapia (Oreochromis niloticus Linn.)

  • J. Anderson (a1), B. S. Capper (a2) and N. R. Bromage (a3)

Abstract

Digestible energy (DE) values were measured in a selection of feedstuffs for the tilapia (Oreochromis niloticus Linn.) and used to develop equations for predicting DE values of a wider range of feedstuffs from chemical analyses. Preliminary work examined the influences of substitution level in a reference diet and adaptation over time on DE values for soya-bean meal. Length of adaptation period significantly affected DE values (P < 0.01), but substitution level, over the range 200–600 g soya-bean meal/kg reference diet, did not. The DE values of sixteen feedstuffs, thirteen derived from plant sources and three animal by-products, were subsequently determined. DE values for plant-derived feedstuffs were found to be higher than those quoted in the literature for trout (Oncorhynchus mykiss) and catfish (Ictalurus punctatus), whereas DE values for animal-derived feedstuffs were lower than those for trout and pigs. It was concluded that energy values quoted in tables of feed composition for other species are inaccurate when used as proxy values for tilapia. Regression equations were therefore computed using data from the present study to provide a rapid means of predicting DE values of feedstuffs for tilapia. Equations using neutral-detergent fibre as an independent variable were found to predict DE values of plant-derived feedstuffs reliably. Where fibre values were not used as independent variables, available carbohydrate and crude protein (nitrogen × 6.25) were found to be useful predictors of DE values. These equations offer the possibility of reducing the need for time-consuming digestibility trials with tilapia when formulating least-cost production diets for this species.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measurement and prediction of digestible energy values in feedstuffs for the herbivorous fish tilapia (Oreochromis niloticus Linn.)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measurement and prediction of digestible energy values in feedstuffs for the herbivorous fish tilapia (Oreochromis niloticus Linn.)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measurement and prediction of digestible energy values in feedstuffs for the herbivorous fish tilapia (Oreochromis niloticus Linn.)
      Available formats
      ×

Copyright

References

Hide All
Anderson, J. (1985). Digestible energy and carbohydrates in the nutrition of tilapia (Oreochromis niloticus Linn.). PhD Thesis, University of Aston, Birmingham.
Anderson, J., Jackson, A. J., Matty, A. J. & Capper, B. S. (1984). Effects of dietary carbohydrate and fibre on the tilapia Oreochromis niloticus (Linn.). Aquaculture 37, 303314.
Austreng, E. (1978). Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture 13, 265272.
Bolton, W. (1960). The determination of digestible carbohydrate in poultry foods. Analyst 85, 189192.
Carpenter, K. J. & Clegg, K. M. (1956). The metabolisable energy of poultry feeding stuffs in relation to their chemical composition. Journal of the Science of Food and Agriculture 7, 4551.
Cho, C. Y., Slinger, S. J. & Bayley, H. S. (1982). Bioenergetics of salmonid fishes: Energy intake, expenditure and productivity. Comparative Biochemistry and Physiology 73B, 2541.
Crooke, W. M. & Simpson, W. E. (1971). Determination of ammonium in kjeldahl digests of crops by an automated procedure. Journal of the Science of Food and Agriculture 22, 910.
Drennan, P. & Maguire, M. F. (1970). Prediction of the digestible and metabolisable energy content of pig diets from their fibre content. Irish Journal of Agricultural Research 9, 197202.
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures and Some Applications). Agricultural Handbook of the United States Department of Agriculture no. 379. Washington, DC: Agricultural Research Service, US Department of Agriculture.
Hilton, J. W., Atkinson, J. L. & Slinger, S. J. (1982). Maximum tolerable level, digestion and metabolism of d-glucose (Cerelose) in rainbow trout (Salmo gairdneri) reared on a practical trout diet. Canadian Journal of Fisheries and Aquatic Sciences 39, 12291234.
Kirk, R. E. (1968). Experimental Design: Procedures for the Behavioural Sciences. Monterey, California: Brooks/Cole Publishing Company.
Ministry of Agriculture, Fisheries and Food (1973). Analysis of Agricultural Materials. Technical Bulletin no. 27. London: H. M. Stationery Office.
Ministry of Agriculture, Fisheries and Food (1975). Energy Allowances and Feeding Systems for Ruminants. Technical Bulletin no. 33. London: H.M. Stationery Office.
Morgan, D. J., Cole, D. J. A. & Lewis, D. (1975 a). Energy values in pig nutrition. I. The relationship between digestible energy, metabolisable energy and total digestible nutrient values of a range of feedstuffs. Journal of Agricultural Science, Cambridge 84, 717.
Morgan, D. J., Cole, D. J. A. & Lewis, D. (1975 b). Energy values in pig nutrition. II. The prediction of energy values from dietary chemical analysis. Journal of Agricultural Science, Cambridge 84, 1927.
Nagase, G. (1964). Contributions to the physiology of digestion in Tilapia mossambica Peters: digestive enzymes and the effects of diets on their activity. Zeitschrift für Vergleichende Physiologie 49, 270284.
Pappas, C. J., Tiemeier, O. W. & Deyoe, C. W. (1973). Chromic sesquioxide as an indicator in digestion studies on channel catfish. Progressive Fish-Culturist 35, 9798.
Schneider, B. H., Lucas, H. L., Pavlech, H. & Cipolloni, M. A. (1951). Estimation of the digestibility of feeds from their proximate composition. Journal of Animal Science 10, 706713.
Smith, M. A. K. & Thorpe, A. (1976). Nitrogen metabolism and trophic input in relation to growth in freshwater and saltwater Salmo gairdneri. Biological Bulletin 150, 139151.
Smith, R. R. (1976). Metabolisable energy of feedstuffs for trout. Feedstuffs 48 no. 23, 1621.
Smith, R. R., Peterson, M. L. & Allred, A. C. (1980). Effect of leaching on apparent digestion coefficients of feedstuffs for Salmonids. Progressive Fish-Culturist 42, 195199.
Snedecor, G. W. & Cochran, W. G. (1972). Statistical Methods, 6th ed. Ames: Iowa State University Press.
Stickney, R. R. & Lovell, R. T. (1977). Nutrition and feeding of channel catfish. Southern Cooperatives Series Bulletin 218, 167.
Stickney, R. R. & Shumway, E. E. (1974). Occurrence of cellulase activity in the stomach of fishes. Journal of Fish Biology 6, 779790.
Ufodike, E. B. C. & Matty, A. J. (1983). Growth responses and nutrient digestibility in mirror carp (Cyprinus carpio) fed different levels of cassava and rice. Aquaculture 31, 4150.
Van Dyke, J. M. V. & Sutton, D. L. (1977). Digestion of duckweed (Lemna sp.) by the grass carp (Ctenopharyngodon idella). Journal of Fish Biology 11, 273278.

Keywords

Measurement and prediction of digestible energy values in feedstuffs for the herbivorous fish tilapia (Oreochromis niloticus Linn.)

  • J. Anderson (a1), B. S. Capper (a2) and N. R. Bromage (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed