Skip to main content Accessibility help
×
Home

Maternal vitamin D and neonatal anthropometrics and markers of neonatal glycaemia: Belfast Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study

  • Claire Casey (a1), Ann McGinty (a1), Valerie A. Holmes (a1), Chris C. Patterson (a1), Ian S. Young (a1) and David R. McCance (a1) (a2)...

Abstract

Vitamin D deficiency is a common occurrence globally, and particularly so in pregnancy. There is conflicting evidence regarding the role of vitamin D during pregnancy in non-skeletal health outcomes for both the mother and the neonate. The aim of this study was to investigate the associations of maternal total 25-hydroxy vitamin D (25OHD) with neonatal anthropometrics and markers of neonatal glycaemia in the Belfast centre of the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. Serological samples (n 1585) were obtained from pregnant women in the Royal Jubilee Maternity Hospital, Belfast, Northern Ireland, between 24 and 32 weeks’ gestation as part of the HAPO study. 25OHD concentrations were measured by liquid chromatography tandem-MS. Cord blood and neonatal anthropometric measurements were obtained within 72 h of birth. Statistical analysis was performed. After adjustment for confounders, birth weight standard deviation scores (SDS) and birth length SDS were significantly associated with maternal total 25OHD. A doubling of maternal 25OHD at 28 weeks’ gestation was associated with mean birth weight SDS and mean birth length SDS higher by 0·05 and 0·07, respectively (both, P=0·03). There were no significant associations with maternal 25OHD and other measures of neonatal anthropometrics or markers of neonatal glycaemia. In conclusion, maternal total 25OHD during pregnancy was independently associated with several neonatal anthropometric measurements; however, this association was relatively weak.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maternal vitamin D and neonatal anthropometrics and markers of neonatal glycaemia: Belfast Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maternal vitamin D and neonatal anthropometrics and markers of neonatal glycaemia: Belfast Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maternal vitamin D and neonatal anthropometrics and markers of neonatal glycaemia: Belfast Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: D. R. McCance, fax +44 2890 310111, email david.mccance@belfasttrust.hscni.net

References

Hide All
1. Saraf, R, Morton, S, Camargo, C, et al. (2016) Global summary of maternal and newborn vitamin D status – a systematic review. Matern Child Nutr 12, 647668.
2. Ponsonby, AL, Lucas, RM, Lewis, S, et al. (2010) Vitamin D status during pregnancy and aspects of offspring health. Nutrients 2, 389407.
3. Pérez-López, FR, Pasupuleti, V, Mezones-Holguin, E, et al. (2015) Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 103, 12781288.
4. De-Regil, L, Palacios, C, Lombardo, L, et al. (2016) Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev, issue 1, CD008873.
5. Harvey, NC, Holroyd, C, Ntani, G, et al. (2014) Vitamin D supplementation in pregnancy: a systematic review. Health Technol Assess 18, 1190.
6. Gernand, AD, Simhan, HN, Klebanoff, MA, et al. (2013) Maternal serum 25-hydroxyvitamin D and measures of newborn and placental weight in a U.S. multicenter cohort study. J Clin Endocrinol Metab 98, 398404.
7. Lindberg, B, Ivarsson, S & Lernmark, A (1999) Islet autoantibodies in cord blood could be a risk factor for future diabetes. Diabetologia 42, 1443.
8. Chiu, KC, Chu, A, Go, VLW, et al. (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr 79, 820825.
9. Kayaniyil, S, Retnakaran, R, Harris, SB, et al. (2011) Prospective associations of vitamin D with beta-cell function and glycemia: The PROspective Metabolism and ISlet cell Evaluation (PROMISE) cohort study. Diabetes 60, 29472953.
10. Hyperglycemia and Adverse Pregnancy Outcome Study Cooperative Research Group (2002) The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Int J Gynecol Obstet 78, 6977.
11. The Hyperglycemia and Adverse Pregnancy Outcome Study Cooperative Research Group (2008) Hyperglycemia and Adverse Pregnancy Outcomes. N Engl J Med 358, 19912002.
12. Rogers, I, Emmett, P, Baker, D, et al. (1998) Financial difficulties, smoking habits, composition of the diet and birthweight in a population of pregnant women in the South West of England. Eur J Clin Nutr 52, 251260.
13. Food Standards Agency (2002) McCance and Widdowson’s The Composition of Foods, 6th ed. Cambridge: Royal Society of Chemistry.
14. Schwartz, N, Nachum, Z & Green, MS (2015) The prevalence of gestational diabetes mellitus recurrence – effect of ethnicity and parity: a meta analysis. Am J Obstet Gynecol 213, 310317.
15. Levy, J, Matthews, D & Hermans, M (1998) Correct Homeostasis Model Assessment (HOMA) evaluation uses the computer program. Diabetes Care 21, 21912192.
16. Cole, T, Freeman, J & Preece, M (1998) British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med 17, 407429.
17. Scientific Advisory Committee on Nutrition (2016) Vitamin D and Health. London: Scientific Advisory Committee on Nutrition.
18. Gernand, AD, Simhan, HN, Caritas, S, et al. (2014) Maternal vitamin D status and small-for-gestational-age offspring in women at high risk for preeclampsia. Obstet Gynecol 123, 4048.
19. Miller, DR, Turner, SW, Spidery-Cornish, D, et al. (2015) Maternal vitamin D and E intakes during early pregnancy are associated with airway epithelial cell responses in neonates. Clin Ext Allergy 45, 920927.
20. Josephson, JL, Fein glass, J, Pacemaker, AW, et al. (2014) Maternal obesity and vitamin D sufficiency are associated with cord blood vitamin D insufficiency. J Endocrinol Metab 98, 114119.
21. Josefson, JL, Reisetter, A, Scholtens, DM, et al. (2016) Maternal BMI associations with maternal and cord blood vitamin D levels in a North American subset of Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study participants. PLOS ONE 11, e0150221.
22. Rodriguez, A, García-Esteban, R, Basterretxea, M, et al. (2015) Associations of maternal circulating 25-hydroxyvitamin D3 concentration with pregnancy and birth outcomes. BJOG 122, 16951704.
23. Chen, Y, Fu, L, Hao, J, et al. (2015) Maternal vitamin D deficiency during pregnancy elevates the risks of small for gestational age and low birth weight infants in Chinese population. J Clin Endocrinol Metab 100, 19121919.
24. Eckhardt, C, Gernand, AD, Roth, DE, et al. (2015) Maternal vitamin D status and infant anthropometry in a US multi-centre cohort study. Ann Hum Biol 42, 215222.
25. Javaid, MK, Crozier, SR, Harvey, NC, et al. (2006) Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 367, 3643.
26. Olmos-Ortiz, A, Avila, E, Durand-Carbajal, M, et al. (2015) Regulation of calcitriol biosynthesis and activity: focus on gestational vitamin D deficiency and adverse pregnancy outcomes. Nutrients 7, 443480.
27. Moore, WT, Bowser, SM, Fausnacht, DW, et al. (2015) Beta cell function and the nutritional state: dietary factors that influence insulin secretion. Curr Diab Rep 15, 19.
28. Dong, J-Y, Zhang, W-G, Chen, JJ, et al. (2013) Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients 5, 35513562.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed