Skip to main content Accessibility help
×
Home

Maternal nicotinamide supplementation causes global DNA hypomethylation, uracil hypo-incorporation and gene expression changes in fetal rats

  • Yan-Jie Tian (a1), Ning Luo (a1), Na-Na Chen (a1), Yong-Zhi Lun (a1), Xin-Yi Gu (a2), Zhi Li (a1), Qiang Ma (a2) and Shi-Sheng Zhou (a1)...

Abstract

Recent evidence shows that excess nicotinamide can cause epigenetic changes in developing rats. The aim of the present study was to investigate the effects of maternal nicotinamide supplementation on the fetus. Female rats were randomised into four groups fed a standard chow diet (control group) or diets supplemented with 1 g/kg of nicotinamide (low-dose group), 4 g/kg of nicotinamide (high-dose group) or 4 g/kg of nicotinamide plus 2 g/kg of betaine (betaine group) for 14–16 d before mating and throughout the study. Fetal tissue samples were collected on the 20th day of pregnancy. Compared with the control group, the high-dose group had a higher fetal death rate, and the average fetal body weight was higher in the low-dose group but lower in the high-dose group. Nicotinamide supplementation led to a decrease in placental and fetal hepatic genomic DNA methylation and genomic uracil contents (a factor modifying DNA for diversity) in the placenta and fetal liver and brain, which could be completely or partially prevented by betaine. Moreover, nicotinamide supplementation induced tissue-specific alterations in the mRNA expression of the genes encoding nicotinamide N-methyltransferase, DNA methyltransferase 1, catalase and tumour protein p53 in the placenta and fetal liver. High-dose nicotinamide supplementation increased fetal hepatic α-fetoprotein mRNA level, which was prevented by betaine supplementation. It is concluded that maternal nicotinamide supplementation can induce changes in fetal epigenetic modification and DNA base composition. The present study raises the concern that maternal nicotinamide supplementation may play a role in the development of epigenetic-related diseases in the offspring.

Copyright

Corresponding author

* Corresponding authors: S.-S. Zhou, fax +86 411 87402053, email zhouss@ymail.com; Q. Ma, email mqiang2100@yahoo.com.cn;

References

Hide All
1 Burdge, GC & Lillycrop, KA (2010) Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30, 315339.
2 Barouki, R, Gluckman, PD, Grandjean, P, et al. (2012) Developmental origins of non-communicable disease: implications for research and public health. Environ Health 11, 42.
3 Boekelheide, K, Blumberg, B, Chapin, RE, et al. (2012) Predicting later-life outcomes of early-life exposures. Environ Health Perspect 120, 13531361.
4 EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Scientific opinion on the safety and efficacy of niacin (nicotinamide) as feed additive for all animal species based on a dossier submitted by Agrinutrition BV. EFSA J 10, 2731.
5 Bürkle, A (2005) Poly(ADP-ribose). The most elaborate metabolite of NAD+ . FEBS J 272, 45764589.
6 Kirkland, JB (2009) Niacin status, NAD distribution and ADP-ribose metabolism. Curr Pharm Des 15, 311.
7 Magni, G, Orsomando, G, Raffelli, N, et al. (2008) Enzymology of mammalian NAD metabolism in health and disease. Front Biosci 13, 61356154.
8 Ellinger, P & Kader, MM (1949) Nicotinamide metabolism in mammals. Biochem J 44, 7787.
9 Mrochek, JE, Jolley, RL, Young, DS, et al. (1976) Metabolic response of humans to ingestion of nicotinic acid and nicotinamide. Clin Chem 22, 18211827.
10 Sun, WP, Li, D, Lun, YZ, et al. (2012) Excess nicotinamide inhibits methylation-mediated degradation of catecholamines in normotensives and hypertensives. Hypertens Res 35, 180185.
11 Li, D, Tian, YJ, Guo, J, et al. (2013) Nicotinamide supplementation induces detrimental metabolic and epigenetic changes in developing rats. Br J Nutr 110, 21562164.
12 Zhou, SS, Li, D, Sun, WP, et al. (2009) Nicotinamide overload may play a role in the development of type 2 diabetes. World J Gastroenterol 15, 56745684.
13 Li, D, Sun, WP, Zhou, YM, et al. (2010) Chronic niacin overload may be involved in the increased prevalence of obesity in US children. World J Gastroenterol 16, 23782387.
14 Slow, S, Lever, M, Chambers, ST, et al. (2009) Plasma dependent and independent accumulation of betaine in male and female rat tissues. Physiol Res 58, 403410.
15 Craig, SA (2004) Betaine in human nutrition. Am J Clin Nutr 80, 539549.
16 Smuckler, EA, Koplitz, M & Sell, S (1976) α-Fetoprotein in toxic liver injury. Cancer Res 36, 45584561.
17 Aljanabi, SM & Martinez, I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25, 46924693.
18 Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCt method. Methods 25, 402408.
19 Robertson, KD & Jones, PA (2000) DNA methylation: past, present and future directions. Carcinogenesis 21, 461467.
20 Bird, A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16, 621.
21 Daniel, FI, Cherubini, K, Yurgel, LS, et al. (2011) The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer 117, 677687.
22 Pogribny, IP & Beland, FA (2009) DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 66, 22492261.
23 Robertson, KD, Uzvolgyi, E, Liang, G, et al. (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27, 22912298.
24 Terentiev, AA & Moldogazieva, NT (2013) Alpha-fetoprotein: a renaissance. Tumour Biol 34, 20752091.
25 Lim, BH, Cho, BI, Kim, YN, et al. (2006) Overexpression of nicotinamide N-methyltransferase in gastric cancer tissues and its potential post-translational modification. Exp Mol Med 38, 455465.
26 Yao, M, Tabuchi, H, Nagashima, Y, et al. (2005) Gene expression analysis of renal carcinoma: adipose differentiation-related protein as a potential diagnostic and prognostic biomarker for clear-cell renal carcinoma. J Pathol 205, 377387.
27 Xu, J, Moatamed, F, Caldwell, JS, et al. (2003) Enhanced expression of nicotinamide N-methyltransferase in human papillary thyroid carcinoma cells. J Clin Endocrinol Metab 88, 49904996.
28 Sartini, D, Muzzonigro, G, Milanese, G, et al. (2013) Upregulation of tissue and urinary nicotinamide N-methyltransferase in bladder cancer: potential for the development of a urine-based diagnostic test. Cell Biochem Biophys 65, 473483.
29 Sartini, D, Morganti, S, Guidi, E, et al. (2013) Nicotinamide N-methyltransferase in non-small cell lung cancer: promising results for targeted anti-cancer therapy. Cell Biochem Biophys 67, 865873.
30 Sousa, MM, Krokan, HE & Slupphaug, G (2007) DNA-uracil and human pathology. Mol Aspects Med 28, 276306.
31 Hagen, L, Peña-Diaz, J, Kavli, B, et al. (2006) Genomic uracil and human disease. Exp Cell Res 312, 26662672.
32 Focher, F, Mazzarello, P, Verri, A, et al. (1990) Activity profiles of enzymes that control the uracil incorporation into DNA during neuronal development. Mutat Res 237, 6573.
33 Muha, V, Horváth, A, Békési, A, et al. (2012) Uracil-containing DNA in Drosophila: stability, stage-specific accumulation, and developmental involvement. PLoS Genet 8, e1002738.
34 Bateson, PP, Rose, SP & Horn, G (1973) Imprinting: lasting effects on uracil incorporation into chick brain. Science 181, 576578.
35 Bateson, PP, Horn, G & Rose, SP (1975) Imprinting: correlations between behaviour and incorporation of [14C]uracil into chick brain. Brain Res 84, 207220.
36 Young, GS, Jacobson, EL & Kirkland, JB (2007) Water maze performance in young male Long-Evans rats is inversely affected by dietary intakes of niacin and may be linked to levels of the NAD+ metabolite cADPR. J Nutr 137, 10501057.
37 Shirley, B (1984) The food intake of rats during pregnancy and lactation. Lab Anim Sci 34, 169172.
38 Reagan-Shaw, S, Nihal, M & Ahmad, N (2008) Dose translation from animal to human studies revisited. FASEB J 22, 659661.
39 Goldberg, AS & Hegele, RA (2012) Severe hypertriglyceridemia in pregnancy. J Clin Endocrinol Metab 97, 25892596.
40 Cabrera-Rode, E, Molina, G, Arranz, C, et al. (2006) Effect of standard nicotinamide in the prevention of type 1 diabetes in first degree relatives of persons with type 1 diabetes. Autoimmunity 39, 333340.
41 Prousky, JE (2005) Supplemental niacinamide mitigates anxiety symptoms: three case reports. J Orthomol Med 20, 167178.
42 Beyer, KH, Russo, HF, Gass, DR, et al. (1950) Renal tubular elimination of N 1-methylnicotinamide. Am J Physiol 160, 311320.
43 Shibata, K (1989) Fate of excess nicotinamide and nicotinic acid differs in rats. J Nutr 119, 892895.
44 MRC (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338, 131137.
45 Kirke, PN, Daly, LE & Elwood, JH (1992) A randomised trial of low dose folic acid to prevent neural tube defects. The Irish Vitamin Study Group. Arch Dis Child 67, 14421446.
46 Czeizel, AE & Dudás, I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327, 18321835.
47 Czeizel, AE, Dobó, M & Vargha, P (2004) Hungarian cohort-controlled trial of periconceptional multivitamin supplementation shows a reduction in certain congenital abnormalities. Birth Defects Res A Clin Mol Teratol 70, 853861.
48 Czeizel, AE (1999) Ten years of experience in periconceptional care. Eur J Obstet Gynecol Reprod Biol 84, 4349.

Keywords

Type Description Title
WORD
Supplementary materials

Tian Supplementary Material
Table 1

 Word (38 KB)
38 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed