Skip to main content Accessibility help
×
Home

Maternal first-trimester dietary intake and childhood blood pressure: the Generation R Study

  • Leontine C. L. van den Hil (a1) (a2) (a3), H. Rob Taal (a1) (a2) (a3), Layla. L. de Jonge (a1) (a2) (a3), Denise H. M. Heppe (a1) (a2) (a3), Eric A. P. Steegers (a4), Albert Hofman (a3), Albert J. van der Heijden (a2) and Vincent W. V. Jaddoe (a1) (a2) (a3)...

Abstract

Suboptimal maternal dietary intake during pregnancy might lead to fetal cardiovascular adaptations and higher blood pressure in the offspring. The aim of the present study was to investigate the associations of maternal first-trimester dietary intake with blood pressure in children at the age of 6 years. We assessed first-trimester maternal daily dietary intake by a FFQ and measured folate, homocysteine and vitamin B12 concentrations in the blood, in a population-based prospective cohort study among 2863 mothers and children. Childhood systolic and diastolic blood pressure was measured using a validated automatic sphygmomanometer. First-trimester maternal daily intake of energy, fat, protein and carbohydrate was not associated with childhood blood pressure. Furthermore, maternal intake of micronutrients was not associated with childhood blood pressure. Also, higher maternal vitamin B12 concentrations were associated with a higher diastolic blood pressure (0·31 mmHg per standard deviation increase in vitamin B12 (95 % CI 0·06, 0·56)). After taking into account multiple testing, none of the associations was statistically significant. Maternal first-trimester folate and homocysteine concentrations were not associated with childhood blood pressure. The results from the present study suggest that maternal Fe intake and vitamin B12 concentrations during the first trimester of pregnancy might affect childhood blood pressure, although the effect estimates were small and were not significant after correction for multiple testing. Further studies are needed to replicate these findings, to elucidate the underlying mechanisms and to assess whether these differences in blood pressure persist in later life.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maternal first-trimester dietary intake and childhood blood pressure: the Generation R Study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maternal first-trimester dietary intake and childhood blood pressure: the Generation R Study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maternal first-trimester dietary intake and childhood blood pressure: the Generation R Study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: V. W. V. Jaddoe, fax +31 10 7044645, email v.jaddoe@erasmusmc.nl

References

Hide All
1Barker, DJ (1995) Fetal origins of coronary heart disease. BMJ 311, 171174.
2Gluckman, PD, Hanson, MA, Cooper, C, et al. (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359, 6173.
3Jaddoe, VW (2008) Fetal nutritional origins of adult diseases: challenges for epidemiological research. Eur J Epidemiol 23, 767771.
4Roseboom, TJ, van der Meulen, JH, Ravelli, AC, et al. (2001) Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 185, 9398.
5Brawley, L, Itoh, S, Torrens, C, et al. (2003) Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res 54, 8390.
6Ozaki, T, Nishina, H, Hanson, MA, et al. (2001) Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530, 141152.
7Aaltonen, J, Ojala, T, Laitinen, K, et al. (2008) Evidence of infant blood pressure programming by maternal nutrition during pregnancy: a prospective randomized controlled intervention study. J Pediatr 152, 7984, 84 e71–72.
8Adair, LS, Kuzawa, CW & Borja, J (2001) Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation 104, 10341039.
9Bakker, R, Rifas-Shiman, SL, Kleinman, KP, et al. (2008) Maternal calcium intake during pregnancy and blood pressure in the offspring at age 3 years: a follow-up analysis of the Project Viva cohort. Am J Epidemiol 168, 13741380.
10Belfort, MB, Rifas-Shiman, SL, Rich-Edwards, JW, et al. (2008) Maternal iron intake and iron status during pregnancy and child blood pressure at age 3 years. Int J Epidemiol 37, 301308.
11Belizan, JM, Villar, J, Bergel, E, et al. (1997) Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ 315, 281285.
12Bergel, E & Barros, AJ (2007) Effect of maternal calcium intake during pregnancy on children's blood pressure: a systematic review of the literature. BMC Pediatr 7, 15.
13Brion, MJ, Leary, SD, Smith, GD, et al. (2008) Maternal anemia, iron intake in pregnancy, and offspring blood pressure in the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr 88, 11261133.
14Gillman, MW, Rifas-Shiman, SL, Kleinman, KP, et al. (2004) Maternal calcium intake and offspring blood pressure. Circulation 110, 19901995.
15Koleganova, N, Piecha, G, Ritz, E, et al. (2011) Both high and low maternal salt intake in pregnancy alter kidney development in the offspring. Am J Physiol Renal Physiol 301, F344F354.
16Leary, SD, Ness, AR, Emmett, PM, et al. (2005) Maternal diet in pregnancy and offspring blood pressure. Arch Dis Child 90, 492493.
17McGarvey, ST, Zinner, SH, Willett, WC, et al. (1991) Maternal prenatal dietary potassium, calcium, magnesium, and infant blood pressure. Hypertension 17, 218224.
18Oosterbaan, AM, Steegers, EA & Ursem, NT (2012) The effects of homocysteine and folic acid on angiogenesis and VEGF expression during chicken vascular development. Microvasc Res 83, 98104.
19Martin, H, Lindblad, B & Norman, M (2007) Endothelial function in newborn infants is related to folate levels and birth weight. Pediatrics 119, 11521158.
20Genser, D, Prachar, H, Hauer, R, et al. (2006) Homocysteine, folate and vitamin B12 in patients with coronary heart disease. Ann Nutr Metab 50, 413419.
21Jaddoe, VW, Bakker, R, van Duijn, CM, et al. (2007) The Generation R Study Biobank: a resource for epidemiological studies in children and their parents. Eur J Epidemiol 22, 917923.
22Jaddoe, VW, van Duijn, CM, van der Heijden, AJ, et al. (2010) The Generation R Study: design and cohort update 2010. Eur J Epidemiol 25, 823841.
23Klipstein-Grobusch, K, den Breeijen, JH, Goldbohm, RA, et al. (1998) Dietary assessment in the elderly: validation of a semiquantitative food frequency questionnaire. Eur J Clin Nutr 52, 588596.
24Donders-Engelen, M, van der Heijden, L & Hulshof, KFAM (2003) Tabel Maten en gewichten (Tables of Measures and Weights), 2nd ed.Zeist: University of Wageningen.
25Netherlands-Nutrition-Centre (2006) Nevo: Dutch Food Composition Database 2006. The Hague: Netherlands-Nutrition-Centre.
26Timmermans, S, Jaddoe, VW, Hofman, A, et al. (2009) Periconception folic acid supplementation, fetal growth and the risks of low birth weight and preterm birth: the Generation R Study. Br J Nutr 102, 777785.
27Wong, SN, Tz Sung, RY & Leung, LC (2006) Validation of three oscillometric blood pressure devices against auscultatory mercury sphygmomanometer in children. Blood Press Monit 11, 281291.
28Statistics Netherlands (2004) Standaard onderwijsindeling 2003 (Standardised Classification of Educational Level). Voorburg/Heerlen: Statistics Netherlands.
29Laird, NM & Ware, JH (1982) Random-effects models for longitudinal data. Biometrics 38, 963974.
30Gillman, MW & Cook, NR (1995) Blood pressure measurement in childhood epidemiological studies. Circulation 92, 10491057.
31Lawlor, DA, Najman, JM, Sterne, J, et al. (2004) Associations of parental, birth, and early life characteristics with systolic blood pressure at 5 years of age: findings from the Mater-University study of pregnancy and its outcomes. Circulation 110, 24172423.
32Lawlor, DA & Smith, GD (2005) Early life determinants of adult blood pressure. Curr Opin Nephrol Hypertens 14, 259264.
33Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S–1228S (discussion 1229S–1231S).
34Sterne, JA, White, IR, Carlin, JB, et al. (2009) Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 338, b2393.
35Nohr, EA, Frydenberg, M, Henriksen, TB, et al. (2006) Does low participation in cohort studies induce bias? Epidemiology 17, 413418.
36Cuco, G, Fernandez-Ballart, J, Sala, J, et al. (2006) Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur J Clin Nutr 60, 364371.
37Huxley, RR, Shiell, AW & Law, CM (2000) The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens 18, 815831.
38Eriksson, JG, Forsen, T, Tuomilehto, J, et al. (2001) Early growth and coronary heart disease in later life: longitudinal study. BMJ 322, 949953.
39Li, Y, Jaddoe, VW, Qi, L, et al. (2011) Exposure to the Chinese famine in early life and the risk of hypertension in adulthood. J Hypertens 29, 10851092.
40Roseboom, TJ, van der Meulen, JH, van Montfrans, GA, et al. (2001) Maternal nutrition during gestation and blood pressure in later life. J Hypertens 19, 2934.
41Webb, AL, Conlisk, AJ, Barnhart, HX, et al. (2005) Maternal and childhood nutrition and later blood pressure levels in young Guatemalan adults. Int J Epidemiol 34, 898904.
42Lewis, RM, Petry, CJ, Ozanne, SE, et al. (2001) Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring. Metabolism 50, 562567.
43Gambling, L, Dunford, S, Wallace, DI, et al. (2003) Iron deficiency during pregnancy affects postnatal blood pressure in the rat. J Physiol 552, 603610.
44Crowe, C, Dandekar, P, Fox, M, et al. (1995) The effects of anaemia on heart, placenta and body weight, and blood pressure in fetal and neonatal rats. J Physiol 488, 515519.
45Porter, JP, King, SH & Honeycutt, AD (2007) Prenatal high-salt diet in the Sprague–Dawley rat programs blood pressure and heart rate hyperresponsiveness to stress in adult female offspring. Am J Physiol Regul Integr Comp Physiol 293, R334R342.
46George, L, Mills, JL, Johansson, AL, et al. (2002) Plasma folate levels and risk of spontaneous abortion. JAMA 288, 18671873.
47Hogeveen, M, Blom, HJ & den Heijer, M (2012) Maternal homocysteine and small-for-gestational-age offspring: systematic review and meta-analysis. Am J Clin Nutr 95, 130136.
48Parazzini, F, Chiaffarino, F, Ricci, E, et al. (2011) Homocysteine, red cell, and plasma folate concentrations and birth weight in Italian women: results from a prospective study. J Matern Fetal Neonatal Med 24, 427431.
49Ray, JG & Laskin, CA (1999) Folic acid and homocyst(e)ine metabolic defects and the risk of placental abruption, pre-eclampsia and spontaneous pregnancy loss: a systematic review. Placenta 20, 519529.
50Vaidya, A, Saville, N, Shrestha, BP, et al. (2008) Effects of antenatal multiple micronutrient supplementation on children's weight and size at 2 years of age in Nepal: follow-up of a double-blind randomised controlled trial. Lancet 371, 492499.

Keywords

Type Description Title
WORD
Supplementary materials

van den Hill et al. supplementary material
Supplementary table

 Word (38 KB)
38 KB

Maternal first-trimester dietary intake and childhood blood pressure: the Generation R Study

  • Leontine C. L. van den Hil (a1) (a2) (a3), H. Rob Taal (a1) (a2) (a3), Layla. L. de Jonge (a1) (a2) (a3), Denise H. M. Heppe (a1) (a2) (a3), Eric A. P. Steegers (a4), Albert Hofman (a3), Albert J. van der Heijden (a2) and Vincent W. V. Jaddoe (a1) (a2) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed