Skip to main content Accessibility help
×
Home

Maternal dietary patterns and gestational diabetes mellitus: a large prospective cohort study in China

  • Jian-Rong He (a1), Ming-Yang Yuan (a1), Nian-Nian Chen (a1), Jin-Hua Lu (a1), Cui-Yue Hu (a1), Wei-Bi Mai (a2), Rui-Fang Zhang (a2), Yong-Hong Pan (a2), Lan Qiu (a1), Ying-Fang Wu (a1), Wan-Qing Xiao (a1), Yu Liu (a1), Hui-Min Xia (a1) and Xiu Qiu (a1)...

Abstract

Few studies have explored the relationship between dietary patterns and the risk of gestational diabetes mellitus (GDM). Evidence from non-Western areas is particularly lacking. In the present study, we aimed to examine the associations between dietary patterns and the risk of GDM in a Chinese population. A total of 3063 pregnant Chinese women from an ongoing prospective cohort study were included. Data on dietary intake were collected using a FFQ at 24–27 weeks of gestation. GDM was diagnosed using a 75 g, 2 h oral glucose tolerance test. Dietary patterns were determined by principal components factor analysis. A log-binomial regression model was used to examine the associations between dietary pattern and the risk of GDM. The analysis identified four dietary patterns: vegetable pattern; protein-rich pattern; prudent pattern; sweets and seafood pattern. Multivariate analysis showed that the highest tertile of the vegetable pattern was associated with a decreased risk of GDM (relative risk (RR) 0·79, 95 % CI 0·64, 0·97), compared with the lowest tertile, whereas the highest tertile of the sweets and seafood pattern was associated with an increased risk of GDM (RR 1·23, 95 % CI 1·02, 1·49). No significant association was found for either the protein-rich or the prudent pattern. The protective effect of a high vegetable pattern score was more evident among women who had a family history of diabetes (P for interaction = 0·022). These findings suggest that the vegetable pattern was associated with a decreased risk of GDM, while the sweets and seafood pattern was associated with an increased risk of GDM. These findings may be useful in dietary counselling during pregnancy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Maternal dietary patterns and gestational diabetes mellitus: a large prospective cohort study in China
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Maternal dietary patterns and gestational diabetes mellitus: a large prospective cohort study in China
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Maternal dietary patterns and gestational diabetes mellitus: a large prospective cohort study in China
      Available formats
      ×

Copyright

Corresponding author

* Corresponding authors: H.-M. Xia, fax +86 20 38076001, email huimin.xia876001@gmail.com; X. Qiu, fax +86 20 38076639, email qxiu0161@163.com

References

Hide All
1 Reece, EA, Leguizamon, G & Wiznitzer, A (2009) Gestational diabetes: the need for a common ground. Lancet 373, 17891797.
2 American Diabetes Association (2004) Gestational diabetes mellitus. Diabetes Care 27, Suppl. 1, S88S90.
3 Buckley, BS, Harreiter, J, Damm, P, et al. (2012) Gestational diabetes mellitus in Europe: prevalence, current screening practice and barriers to screening. A review. Diabet Med 29, 844854.
4 Dabelea, D, Snell-Bergeon, JK, Hartsfield, CL, et al. (2005) Increasing prevalence of gestational diabetes mellitus (GDM) over time and by birth cohort: Kaiser Permanente of Colorado GDM Screening Program. Diabetes Care 28, 579584.
5 Barbour, LA (2014) Unresolved controversies in gestational diabetes: implications on maternal and infant health. Curr Opin Endocrinol Diabetes Obes 21, 264270.
6 Zhang, C & Ning, Y (2011) Effect of dietary and lifestyle factors on the risk of gestational diabetes: review of epidemiologic evidence. Am J Clin Nutr 94, 1975S1979S.
7 Bo, S, Menato, G, Lezo, A, et al. (2001) Dietary fat and gestational hyperglycaemia. Diabetologia 44, 972978.
8 Gonzalez-Clemente, JM, Carro, O, Gallach, I, et al. (2007) Increased cholesterol intake in women with gestational diabetes mellitus. Diabetes Metab 33, 2529.
9 Qiu, C, Frederick, IO, Zhang, C, et al. (2011) Risk of gestational diabetes mellitus in relation to maternal egg and cholesterol intake. Am J Epidemiol 173, 649658.
10 Wang, Y, Storlien, LH, Jenkins, AB, et al. (2000) Dietary variables and glucose tolerance in pregnancy. Diabetes Care 23, 460464.
11 Radesky, JS, Oken, E, Rifas-Shiman, SL, et al. (2008) Diet during early pregnancy and development of gestational diabetes. Paediatr Perinat Epidemiol 22, 4759.
12 Zhang, C, Liu, S, Solomon, CG, et al. (2006) Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 29, 22232230.
13 Bao, W, Bowers, K, Tobias, DK, et al. (2013) Prepregnancy dietary protein intake, major dietary protein sources, and the risk of gestational diabetes mellitus: a prospective cohort study. Diabetes Care 36, 20012008.
14 Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
15 Karamanos, B, Thanopoulou, A, Anastasiou, E, et al. (2014) Relation of the Mediterranean diet with the incidence of gestational diabetes. Eur J Clin Nutr 68, 813.
16 Zhang, C, Schulze, MB, Solomon, CG, et al. (2006) A prospective study of dietary patterns, meat intake and the risk of gestational diabetes mellitus. Diabetologia 49, 26042613.
17 Bao, W, Bowers, K, Tobias, DK, et al. (2014) Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: a prospective cohort study. Am J Clin Nutr 99, 13781384.
18 Zhou, B (2002) Prospective study for cut-off points of body mass index in Chinese adults. Zhonghua Liu Xing Bing Xue Za Zhi 23, 431434.
19 Metzger, BE, Gabbe, SG, Persson, B, et al. (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33, 676682.
20 Englund-Ogge, L, Brantsaeter, AL, Sengpiel, V, et al. (2014) Maternal dietary patterns and preterm delivery: results from large prospective cohort study. BMJ 348, g1446.
21 McNutt, LA, Wu, C, Xue, X, et al. (2003) Estimating the relative risk in cohort studies and clinical trials of common outcomes. Am J Epidemiol 157, 940943.
22 Gruber, HE, Rhyne, AL 3rd, Hansen, KJ, et al. (2012) Deleterious effects of discography radiocontrast solution on human annulus cell in vitro: changes in cell viability, proliferation, and apoptosis in exposed cells. Spine J 12, 329335.
23 Gao, H, Stiller, CK, Scherbaum, V, et al. (2013) Dietary intake and food habits of pregnant women residing in urban and rural areas of Deyang City, Sichuan Province, China. Nutrients 5, 29332954.
24 Tian, HG, Nan, Y, Hu, G, et al. (1996) A dietary survey of the Chinese population in urban and rural areas of Tianjin. Asia Pac J Clin Nutr 5, 229232.
25 Tobias, DK, Zhang, C, Chavarro, J, et al. (2012) Prepregnancy adherence to dietary patterns and lower risk of gestational diabetes mellitus. Am J Clin Nutr 96, 289295.
26 Tovar, A, Must, A, Bermudez, OI, et al. (2009) The impact of gestational weight gain and diet on abnormal glucose tolerance during pregnancy in Hispanic women. Matern Child Health J 13, 520530.
27 McIntosh, M & Miller, C (2001) A diet containing food rich in soluble and insoluble fiber improves glycemic control and reduces hyperlipidemia among patients with type 2 diabetes mellitus. Nutr Rev 59, 5255.
28 Feskens, EJ & Kromhout, D (1990) Habitual dietary intake and glucose tolerance in euglycaemic men: the Zutphen Study. Int J Epidemiol 19, 953959.
29 Weickert, MO & Pfeiffer, AF (2008) Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 138, 439442.
30 Galisteo, M, Duarte, J & Zarzuelo, A (2008) Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem 19, 7184.
31 Ben-Haroush, A, Yogev, Y & Hod, M (2004) Epidemiology of gestational diabetes mellitus and its association with type 2 diabetes. Diabet Med 21, 103113.
32 Petry, CJ, Ong, KK & Dunger, DB (2007) Does the fetal genotype affect maternal physiology during pregnancy? Trends Mol Med 13, 414421.
33 Petry, CJ, Seear, RV, Wingate, DL, et al. (2011) Associations between paternally transmitted fetal IGF2 variants and maternal circulating glucose concentrations in pregnancy. Diabetes 60, 30903096.
34 Zhang, C, Bao, W, Rong, Y, et al. (2013) Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update 19, 376390.
35 Harrison, TA, Hindorff, LA, Kim, H, et al. (2003) Family history of diabetes as a potential public health tool. Am J Prev Med 24, 152159.
36 Sargeant, LA, Wareham, NJ & Khaw, KT (2000) Family history of diabetes identifies a group at increased risk for the metabolic consequences of obesity and physical inactivity in EPIC-Norfolk: a population-based study. The European Prospective Investigation into Cancer. Int J Obes Relat Metab Disord 24, 13331339.
37 Morris, RD, Rimm, DL, Hartz, AJ, et al. (1989) Obesity and heredity in the etiology of non-insulin-dependent diabetes mellitus in 32,662 adult white women. Am J Epidemiol 130, 112121.
38 Chen, L, Hu, FB, Yeung, E, et al. (2009) Prospective study of pre-gravid sugar-sweetened beverage consumption and the risk of gestational diabetes mellitus. Diabetes Care 32, 22362241.
39 Daly, M (2003) Sugars, insulin sensitivity, and the postprandial state. Am J Clin Nutr 78, 865S872S.
40 Davis, JN, Alexander, KE, Ventura, EE, et al. (2007) Associations of dietary sugar and glycemic index with adiposity and insulin dynamics in overweight Latino youth. Am J Clin Nutr 86, 13311338.
41 Turner, KM, Keogh, JB & Clifton, PM (2015) Dairy consumption and insulin sensitivity: a systematic review of short- and long-term intervention studies. Nutr Metab Cardiovasc Dis 25, 38.
42 Perrine, CG, Galuska, DA, Thompson, FE, et al. (2014) Breastfeeding duration is associated with child diet at 6 years. Pediatrics 134, Suppl. 1, S50S55.
43 Park, S, Pan, L, Sherry, B, et al. (2014) The association of sugar-sweetened beverage intake during infancy with sugar-sweetened beverage intake at 6 years of age. Pediatrics 134, Suppl. 1, S56S62.
44 Braga, DP, Halpern, G, Figueira Rde, C, et al. (2012) Food intake and social habits in male patients and its relationship to intracytoplasmic sperm injection outcomes. Fertil Steril 97, 5359.
45 Dahlquist, GG, Blom, LG, Persson, LA, et al. (1990) Dietary factors and the risk of developing insulin dependent diabetes in childhood. BMJ 300, 13021306.
46 Cuco, G, Fernandez-Ballart, J, Sala, J, et al. (2006) Dietary patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur J Clin Nutr 60, 364371.
47 Crozier, SR, Robinson, SM, Godfrey, KM, et al. (2009) Women's dietary patterns change little from before to during pregnancy. J Nutr 139, 19561963.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

He supplementary material
Table S1

 Word (18 KB)
18 KB

Maternal dietary patterns and gestational diabetes mellitus: a large prospective cohort study in China

  • Jian-Rong He (a1), Ming-Yang Yuan (a1), Nian-Nian Chen (a1), Jin-Hua Lu (a1), Cui-Yue Hu (a1), Wei-Bi Mai (a2), Rui-Fang Zhang (a2), Yong-Hong Pan (a2), Lan Qiu (a1), Ying-Fang Wu (a1), Wan-Qing Xiao (a1), Yu Liu (a1), Hui-Min Xia (a1) and Xiu Qiu (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.