Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T15:28:34.223Z Has data issue: false hasContentIssue false

Lipid metabolism in riboflavin-deficient rats

1. Effect of dietary lipids on riboflavin status and fatty acid profiles

Published online by Cambridge University Press:  09 March 2007

S. E. Olpin
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge CB4 1XJ
C. J. Bates
Affiliation:
Dunn Nutrition Unit, University of Cambridge and Medical Research Council, Cambridge CB4 1XJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The increase in activation coefficient (stimulated: basal activity) of erythrocyte NAD(P)H2:glutathione oxidoreductase (EC 16.4.2) and reduction in hepatic flavin concentration which occurred in riboflavin-deficient weanling rats were not markedly or consistently affected by differences in the concentration of lipid in the diet nor by differences in the total proportion of saturated or polyunsaturated fatty acids in the dietary lipid.

2. Their gain in body-weight was, however, reduced when the dietary lipid concentration was increased from 30 to 200 g/kg and liver: body-weight and hepatic triglyceride content were correspondingly increased, suggesting a functionally-deleterious effect of high fat intake in the deficient animals. This was especially severe when the diets contained cottonseed oil, which appeared to be toxic for the deficient animals.

3. Comparisons between fatty acid profiles of hepatic phospholipids of deficient, pair-fed and ad lib.-fed control animals indicated that the increase in proportion of 18:2 ω6 and the decrease in proportion of 20:4 ω6 observed in deficient animals were due specifically to riboflavin deficiency, whereas certain other changes were probably caused by inanition. The changes in 18:2ω6 and 20:4 ω6 were observed at both low and high levels of lipid intake and at both low and high levels of dietary lipid polyunsaturation. Similar changes in fatty acid profiles were observed in renal, erythrocyte membrane, and plasma phospholipids, but were not seen in cardiac phospholipids.

4. A consistent increase in proportion of 18:2 ω6 was also observed in the hepatic triglycerides, together with a decrease in proportion of 16:0.

5. It is concluded that acute riboflavin deficiency affects lipid metabolism in a characteristic manner, probably by interfering with β-oxidation of fatty acids, but that diets of high lipid content do not significantly increase the extent of flavin depletion.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

American Oil Chemists Society. Tentative Method Ca 13–56.Google Scholar
Berardi, L. C. & Goldblatt, L. A. (1969). In Toxic Constituents of Plant Foodstuffs, p. 211 [Liener, I. E., editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Bessey, O. A., Lowry, O. H. & Love, R. H. (1949). J. biol. Chem. 180, 755.CrossRefGoogle Scholar
Czaczkes, J. W. & Guggenheim, K. (1946). J. biol. Chem. 162, 267.CrossRefGoogle Scholar
Dussault, P. E. & Lepage, M. (1975). J. Nutr. 105, 1371.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
French, S. W., Ihrig, T. J. & Morin, R. J. (1970). Q. Jl Stud. Alc. 31, 801.CrossRefGoogle Scholar
French, S. W., Ihrig, T. J., Shaw, G. P., Tanaka, T. T. & Norum, M. L. (1971). Res. Commun. Chem. Path. Pharmac. 2, 567.Google Scholar
Gershoff, S. N., Andrus, S. B. & Hegsted, D. M. (1959). J. Nutr. 68, 75.CrossRefGoogle Scholar
Goodman, S. I. (1981). Amer. J. clin. Nutr. 34, 2434.CrossRefGoogle Scholar
Guggenheim, K. & Diamant, E. J. (1959). Br. J. Nutr. 13, 61.CrossRefGoogle Scholar
Gurr, M. I. & James, A. T. (1975). Lipid Biochemistry. An Introduction, 2nd ed. London: Chapman and Hall.Google Scholar
Hara, H. (1960). J. Vitam. 6, 24.CrossRefGoogle Scholar
Hartman, L. & Lago, R. C. A. (1973). Lab. Pract. 22, 475.Google Scholar
Hoppel, C., DiMarco, J. P. & Tandler, B. (1979). J. biol. Chem. 254, 4164.CrossRefGoogle Scholar
Kaunitz, H., Wiesinger, H., Blodi, C. F., Johnson, R. E. & Slanetz, C. A. (1954). J. Nutr. 52, 467.CrossRefGoogle Scholar
Kim, Y. S. & Lambooy, J. P. (1969). J. Nutr. 98, 467.CrossRefGoogle Scholar
Koyanagi, T. & Oikawa, K. (1965). Tohoku J. exp. Med. 86, 19.CrossRefGoogle Scholar
Lambooy, J. P. (1975). In Riboflavin, p. 304 [Rivlin, R. S., editor]. New York and London: Plenum Press.Google Scholar
Lyman, R. L., Rosmire, M. A., Giotas, C. & Miljanish, P. (1968). J. Nutr. 94, 74.CrossRefGoogle Scholar
Mannering, G. J., Lipton, M. A. & Elvehjem, C. A. (1941). Proc. Soc. exp. Biol. Med. 46, 100.CrossRefGoogle Scholar
Mannering, G. J., Orsini, D. & Elvehjem, C. A. (1944). J. Nutr. 28, 141.CrossRefGoogle Scholar
Olegard, R. & Svennerholm, L. (1971). Acta Paediat., Scand. 60, 505.CrossRefGoogle Scholar
Olpin, S. E. & Bates, C. J. (1982). Br. J. Nutr. 47, 589.CrossRefGoogle Scholar
Peifer, J. J. & Lewis, R. D. (1979). J. Nutr. 109, 2160.CrossRefGoogle Scholar
Prentice, A. M. & Bates, C. J. (1980). Br. J. Nutr. 43, 171.CrossRefGoogle Scholar
Prentice, A. M. & Bates, C. J. (1981 a). Br. J. Nutr. 45, 37.CrossRefGoogle Scholar
Prentice, A. M. & Bates, C. J. (1981 b). Br. J. Nutr. 45, 53.CrossRefGoogle Scholar
Reiser, R. & Pearson, P. B. (1949). J. Nutr. 38, 247.CrossRefGoogle Scholar
Rogers, C. G. (1971). J. Nutr. 101, 1547.CrossRefGoogle Scholar
Shaw, J. H. & Phillips, P. H. (1941). J. Nutr. 22, 345.CrossRefGoogle Scholar
Tange, U. (1941). J. agric. Chem. Soc. Japan 17, 1050.Google Scholar
Taniguchi, M. & Nakamura, M. (1976). J. Nutr. Sci. Vitam. 22, 135.CrossRefGoogle Scholar
Taniguchi, M., Yamamoto, T. & Nakamura, M. (1978). J. Nutr. Sci. Vitam. 24, 363.CrossRefGoogle Scholar
Wintrobe, M. M., Buschke, W., Follis, R. H. & Humphreys, S. (1944). Bull. Johns Hopkins Hosp. 75, 102.Google Scholar
Wynder, E. L. & Klein, U. E. (1965). Cancer 18, 167.3.0.CO;2-R>CrossRefGoogle Scholar