Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T06:19:38.760Z Has data issue: false hasContentIssue false

Leucine and isoleucine requirements of the kitten

Published online by Cambridge University Press:  09 March 2007

Diane M. Hargrove
Affiliation:
Departments of Physiological Sciences and Animal Science, University of California, Davis, California 95616, USA
Quinton R. Rogers
Affiliation:
Departments of Physiological Sciences and Animal Science, University of California, Davis, California 95616, USA
James G. Morris
Affiliation:
Departments of Physiological Sciences and Animal Science, University of California, Davis, California 95616, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In separate experiments the isoleucine and leucine requirements of the kitten were determined on the basis of growth and nitrogen retention. The dietary concentrations of isoleucine tested were (g/kg diet) 1.4, 2.2, 3.0, 3.8, 4.6 and 9.0 with adequate (12.0 g/kg diet) leucine. The levels of leucine tested were (g/kg diet) 5.0, 7.5, 9.0, 10.5, 12.0 and 20.0 in diets containing adequate (9.0 g/kg diet) isoleucine. In both experiments six male and six female kittens received each dietary level of isoleucine or leucine for periods of 10 d in a balanced 6 x 6 Latin-square experimental design.

2. Asymptotic curves were fitted to the response relationships and the minimal dietary requirements for maximal response were estimated from the values at 0.95 of the asymptote. On this basis, the requirements for maximal growth were 6.2 g isoleucine/kg and 7.8 g leucine/kg diet. The requirements for maximal N retention were higher; 8.4 g isoleucine and 10.6 g leucine/kg diet. The isoleucine requirements suggested by this method are probably overestimations and might be slightly above 4.6 g/kg diet.

3. Plasma isoleucine and leucine concentrations were not useful in estimating the requirements. Plasma leucine increased rectilinearly with increasing dietary leucine while the response of plasma isoleucine to increasing dietary isoleucine was non-rectilinear. Neither response relationship exhibited a breakpoint at the level of requirement. Below the suggested minimal requirement for leucine there were significant increases in the concentrations of isoleucine and valine in the plasma. Dietary isoleucine below the level of requirement had no effect on plasma valine and leucine. Dietary leucine had no effect on the plasma concentrations of methionine, phenylalanine and threonine, suggesting that the effect of decreasing dietary leucine on plasma isoleucine and valine is a result of decreased oxidation rather than decreased protein anabolism.

4. In a separate experiment six kittens, presented a diet containing 2.2 g isoleucine/kg, developed crusty exudates around their eyes within 27 d and six kittens, presented diets containing 3.8 g isoleucine/kg, showed this clinical sign but with less severity within 47 d. Cultures of conjunctival swabs taken from the most severely affected kittens showed the presence of staphylococcal species, suggesting that in isoleucine-deficient kittens there was impaired resistance to these dermal microbes.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

REFERENCES

Anderson, P. A., Baker, D. H., Sherry, P. A., Teeter, R. G. & Corbin, J. E. (1980). Journal of Animal Science 50, 266271.CrossRefGoogle Scholar
BMDP (1981). BMDP statistical software. Los Angeles, California: Department of Biomathematics, University of California.Google Scholar
Bravo, F. O., Meade, R. J., Stockland, W. L. & Nordstrum, J. W. (1970). Journal of Animal Science 31, 11371141.Google Scholar
Buse, M. G. & Reid, S. S. (1975). Journal of Clinical Investigation 56, 12501261.CrossRefGoogle Scholar
Buse, M. G. & Weigand, D. A. (1977). Biochimica et Biophysica Acta 475, 8189.Google Scholar
Chua, B., Siel, D. L. & Morgan, H. E. (1979). Journal of Biological Chemistry 254, 83588362.Google Scholar
Clark, A. J., Yamada, C & Swendseid, M. E. (1968). American Journal of Physiology 215, 13241328.CrossRefGoogle Scholar
D'Mello, J. P. F. (1975). British Poultry Science 16, 607615.CrossRefGoogle Scholar
Eggert, R. G., Williams, H. H., Sheffy, B. E., Sprague, E. G., Loosi, J. K. & Maynard, L. A. (1954). Journal of Nutrition 53, 177185.CrossRefGoogle Scholar
Frick, G. P. & Goodman, H. M. (1981). In Metabolism and Clinical Implications of Branch Chain Amino and Ketoacids, pp. 7378 [Walser, M. & Williamson, J. R., editors]. New York: Elsevier North Holland Inc.Google Scholar
Fulks, R. M., Li, J. B. & Goldberg, A. L. (1975). Journal of Biological Chemistry 250, 290298.Google Scholar
Hardy, A. J., Morris, J. G. & Rogers, Q. R. (1977). Journal of Nutrition 107, 13081312.CrossRefGoogle Scholar
Hargrove, D. M., Rogers, Q. R. & Morris, J. G. (1983). British Journal of Nutrition 50, 487493.CrossRefGoogle Scholar
John, A. M. & Bell, J. M. (1976). Journal of Nutrition 106, 13611368.Google Scholar
Kane, E., Rogers, Q. R., Morris, J. G. & Leung, P. M. B. (1981). Nutrition Research 1, 499507.Google Scholar
Li, J. B. & Jefferson, L. S. (1978). Biochimica et Biophysica Acta 544, 351359.CrossRefGoogle Scholar
McLaughlan, J. M. & Illman, W. I. (1967). Journal of Nutrition 93, 2124.CrossRefGoogle Scholar
Mitchell, J. R. Jr, Becker, D. E., Jensen, A. H., Harmon, B. G. & Norton, H. W. (1968). Journal of Animal Science 27, 13271331.Google Scholar
Morrison, A. B., Middleton, E. J. & McLauehlan, J. M. (1961). Canadian Journai of Biochemistry and Physiology 39, 16751680.CrossRefGoogle Scholar
Mugford, R. A. & Thorne, C. (1980). In Nutrition of the Dog and Cat, pp. 314 [Anderson, R. S., editor]. Oxford: Pergamon Press.Google Scholar
National Research Council (1978). Nutrient Requirements of Domestic Animals No. 10, Nutrient Requirements of Laboratory Animals, 3rd Revised ed. Washington DC: National Academy of Science-National Research Council.Google Scholar
Paxton, R & Harris, R. A. (1983). Proceedings of the American Societies for Experimental Biology Abstracts 42, 540.Google Scholar
Pick, R. T. & Meade, R. J. (1971). Journal of Nutrition 101, 12411248.CrossRefGoogle Scholar
Rao, P. B. R., Metta, V. C. & Johnson, B. C. (1959). Journal of Nutrition 69, 387391.CrossRefGoogle Scholar
Robbins, K. R., Norton, H. W. & Baker, D. H. (1979). Journal of Nutrition 109, 17101714.CrossRefGoogle Scholar
Rogers, Q. R. & Morris, J. G. (1979). Journal of Nutrition 109, 718723.CrossRefGoogle Scholar
Rogers, Q. R., Spolter, P. D. & Harper, A. E. (1962). Archives of Biochemistry and Biophysics 97, 497504.CrossRefGoogle Scholar
Rose, W. C. (1937). Science 86, 298300.Google Scholar
Schaeffer, M. C., Rogers, Q. R. & Morris, J. G. (1982). Journal of Nutrition 112, 962971.Google Scholar
Smalley, K. A., Rogers, Q. R. & Morris, J. G. (1983). British Journal of Nutrition 49, 411417.Google Scholar
Smith, T. K. & Austic, R. E. (1978). Journal of Nutrition 108, 11801191.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics. New York: McGraw-Hill Book Company.Google Scholar
Stockland, W. L. & Meade, R. J. (1970). Journal of Animal Science 31, 11561167.Google Scholar
Stockland, W. L., Meade, R. J. & Melliere, A. L. (1970). Journal of Nutrition 100, 925933.CrossRefGoogle Scholar
Swendseid, M. E., Villalobos, J., Figueroa, W. S. & Drenick, E. J. (1965). American Journal of Clinical Nutrition 17, 317321.Google Scholar
Synderman, S. E., Holt, L. E. Jr, Norton, P. M. & Roitman, E. (1968). Protein Nutrition and Free Amino Acid patterns, pp. 1931 [Leathem, J. H., editor]. New Brunswick N.J.: Rutgers University Press.Google Scholar
Tannous, R. I., Rogers, Q. R. & Harper, A. E. (1966). Archives of Biochemistry and Biophysics 113, 356361.Google Scholar
Teeter, R. G., Baker, D. H. & Corbin, J. E. (1978). Journal of Animal Science 46, 12871292.CrossRefGoogle Scholar
Williams, H. H., Curtin, L. V., Abraham, J., Loosi, J. K. & Maynard, L. A. (1954). Journal of Biological Chemistry 208, 277286.CrossRefGoogle Scholar
Young, V. R., Hussien, M. A., Murray, E & Scrimshaw, N. S. (1971). Journal of Nutrition 101, 4559.Google Scholar
Young, V. R. & Munro, H. N. (1973). Journal of Nutrition 103, 17561763.Google Scholar
Zimmerman, R. A. & Scott, H. M. (1965). Journal of Nutrition 87, 1318.CrossRefGoogle Scholar