Skip to main content Accessibility help
×
Home

Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals

  • Michael B. Zimmermann (a1) (a2), Ralf Biebinger (a1) (a3), Ines Egli (a1), Christophe Zeder (a1) and Richard F. Hurrell (a1)...

Abstract

Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v. Fe-sufficient children. Using stable isotopes in test meals in young women (n 49) selected for low and high Fe status, we compared the absorption of FPP with FS. We analysed data from previous efficacy trials in children (n 258) to determine whether Fe status at baseline predicted response to FS v. FPP as salt fortificants. Plasma ferritin was a strong negative predictor of Fe bioavailability from FS (P < 0·0001) but not from FPP. In the efficacy trials, body Fe at baseline was a negative predictor of the change in body Fe for both FPP and FS, but the effect was significantly greater with FS (P < 0·01). Because Fe deficiency up-regulates Fe absorption from FS but not from FPP, food fortification with FS may have relatively greater impact in Fe-deficient children. Thus, more soluble Fe compounds not only demonstrate better overall absorption and can be used at lower fortification levels, but they also have the added advantage that, because their absorption is up-regulated in Fe deficiency, they innately ‘target’ Fe-deficient individuals in a population.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: M. B. Zimmermann, email michael.zimmermann@ilw.agrl.ethz.ch

References

Hide All
1Zimmermann, MB & Hurrell, RF (2007) Nutritional iron deficiency. Lancet 370, 511520.
2Hurrell, RF (1997) Preventing iron deficiency through food fortification. Nutr Rev 55, 210222.
3World Health Organization (2006) Guidelines on Food Fortification with Micronutrients. Geneva: World Health Organization.
4Bezwoda, WR, Bothwell, TH, Torrance, JD, et al. (1979) The relationship between marrow iron stores, plasma ferritin concentrations and iron absorption. Scand J Haematol 22, 113120.
5Ganz, T & Nemeth, E (2006) Iron imports IV. Hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol 290, 199203.
6Moretti, D, Zimmermann, MB, Wegmuller, R, et al. (2006) Iron status and food matrix strongly affect the relative bioavailability of FPP in humans. Am J Clin Nutr 83, 632638.
7Kastenmayer, P, Davidsson, L, Galan, P, et al. (1994) A double stable isotope technique for measuring iron absorption in infants. Br J Nutr 71, 411424.
8Walczyk, T, Davidson, L, Zavaleta, N, et al. (1997) Stable isotope labels as a tool to determine the iron absorption by Peruvian school children from a breakfast meal. Fresenius J Anal Chem 359, 445449.
9Taylor, PDP, Maeck, R & De Bièvre, P (1992) Determination of the absolute isotopic composition and atomic-weight of a reference sample of natural iron. Int J Mass Spectrom Ion Proc 121, 111125.
10Brown, E, Hopper, J, Hodges, JL, et al. (1962) Red cell, plasma, and blood volume in the healthy women measured by radiochromium cell-labeling and hematocrit. J Clin Invest 41, 21822190.
11Zimmermann, MB, Zeder, C, Chaouki, N, et al. (2003) Dual fortification of salt with iodine and microencapsulated iron: a randomized, double-blind, controlled trial in Moroccan schoolchildren. Am J Clin Nutr 77, 425432.
12Zimmermann, MB, Wegmueller, R, Zeder, C, et al. (2004) Dual fortification of salt with iodine and micronized ferric pyrophosphate: a randomized, double-blind, controlled trial. Am J Clin Nutr 80, 952959.
13WHO/UNICEF/UNU (2001) Iron Deficiency Anemia Assessment, Prevention, and Control. Geneva: World Health Organization.
14Cook, JD, Flowers, CH & Skikne, BS (2003) The quantitative assessment of body iron. Blood 101, 33593364.
15Wegmüller, R, Camara, F, Zimmermann, MB, et al. (2006) Salt dual-fortified with iodine and micronized ground ferric pyrophosphate affects iron status but not hemoglobin in children in Cote d'Ivoire. J Nutr 136, 18141820.
16Moretti, D, Zimmermann, MB, Muthayya, S, et al. (2006) Extruded rice fortified with micronized ground ferric pyrophosphate reduces iron deficiency in Indian schoolchildren: a double-blind randomized controlled trial. Am J Clin Nutr 84, 822829.
17Andersson, M, Thankachan, P, Muthayya, S, et al. (2008) Dual fortification of salt with iodine and iron: a randomized, double-blind, controlled trial of micronized ferric pyrophosphate and encapsulated ferrous fumarate in southern India. Am J Clin Nutr 88, 13781387.
18Walters, GO, Jacobs, A, Worwood, M, et al. (1975) Iron absorption in normal subjects and patients with idiopathic hemochromatosis: relationship with serum ferritin concentration. Gut 16, 188192.
19Baynes, RD, Bothwell, TH, Bezwoda, WR, et al. (1987) Relationship between absorption of inorganic and food iron in field studies. Ann Nutr Metab 31, 109116.
20Fomon, SJ, Nelson, SE, Serfass, RE, et al. (2005) Absorption and loss of iron in toddlers are highly correlated. J Nutr 135, 771777.
21Lynch, MF, Griffin, IJ, Hawthorne, KM, et al. (2007) Iron absorption is more closely related to iron status than to daily iron intake in 12- to 48-mo-old children. J Nutr 137, 8892.
22Hicks, PD, Zavaleta, N, Chen, Z, et al. (2006) Iron deficiency, but not anemia, upregulates iron absorption in breast-fed Peruvian infants. J Nutr 136, 24352438.
23Finch, C (1994) Regulators of iron balance in humans. Blood 84, 16971702.
24Mackenzie, B & Garrick, MD (2005) Iron imports II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol 289, G981G986.
25Stuart, KA, Anderson, GJ, Frazer, DM, et al. (2003) Duodenal expression of iron transport molecules in untreated haemochromatosis subjects. Gut 52, 953959.
26Zoller, H, Theurl, I, Koch, RO, et al. (2003) Duodenal cytochrome b and hephaestin expression in patients with iron deficiency and hemochromatosis. Gastroenterology 125, 746754.
27Kelleher, T, Ryan, E, Barrett, S, et al. (2004) Increased DMT1 but not IREG1 or HFE mRNA following iron depletion therapy in hereditary haemochromatosis. Gut 53, 11741179.
28Gleeson, F, Ryan, E, Barrett, S, et al. (2005) Duodenal Dcytb and hephaestin mRNA expression are not significantly modulated by variations in body iron homeostasis. Blood Cells Mol Dis 35, 303308.

Keywords

Iron deficiency up-regulates iron absorption from ferrous sulphate but not ferric pyrophosphate and consequently food fortification with ferrous sulphate has relatively greater efficacy in iron-deficient individuals

  • Michael B. Zimmermann (a1) (a2), Ralf Biebinger (a1) (a3), Ines Egli (a1), Christophe Zeder (a1) and Richard F. Hurrell (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed