Skip to main content Accessibility help
×
Home

Iron deficiency and NRAMP1 polymorphisms (INT4, D543N and 3′UTR) do not contribute to severity of anaemia in tuberculosis in the Indonesian population

  • Edhyana Sahiratmadja (a1) (a2) (a3), Frank T. Wieringa (a4), Reinout van Crevel (a4), Adriëtte W. de Visser (a3), Iskandar Adnan (a1), Bachti Alisjahbana (a5), Eline Slagboom (a6), Sangkot Marzuki (a1), Tom H. M. Ottenhoff (a2) (a3), Esther van de Vosse (a3) and Joannes J. M. Marx (a7)...

Abstract

Fe-deficiency anaemia is the most common cause of anaemia in developing countries. In these settings, many chronic infections, including tuberculosis (TB), are highly prevalent. Fe is an essential nutrient for both host and mycobacteria that play a pivotal role in host immunity and mycobacterial growth. A case–control study was performed in a TB-endemic region in Jakarta, Indonesia, among 378 pulmonary TB patients and 436 healthy controls from the same neighbourhood with the same socio-economic status. In a number of these subjects the Fe status could be explored. The distribution of three polymorphisms in the natural resistance-associated macrophage protein gene (NRAMP1) including INT4, D543N and 3′UTR was examined for a possible association with susceptibility to TB. Anaemia (corrected for sex) was present in 63·2 % of active TB compared with 6·8 % of controls, with female patients more often affected. Anaemia was more pronounced in advanced TB as diagnosed by chest radiography. Lower Hb concentrations in TB patients were accompanied by lower plasma Fe concentrations, lower Fe-binding capacity and higher plasma ferritin. After successful TB therapy, Fe parameters improved towards control values and Hb levels normalised, even without Fe supplementation. NRAMP1 gene polymorphisms were not associated with TB susceptibility, TB severity or anaemia. In conclusion, most active TB patients had anaemia, which was probably due to inflammation and not to Fe deficiency since TB treatment without Fe supplementation was sufficient to restore Hb concentration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Iron deficiency and NRAMP1 polymorphisms (INT4, D543N and 3′UTR) do not contribute to severity of anaemia in tuberculosis in the Indonesian population
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Iron deficiency and NRAMP1 polymorphisms (INT4, D543N and 3′UTR) do not contribute to severity of anaemia in tuberculosis in the Indonesian population
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Iron deficiency and NRAMP1 polymorphisms (INT4, D543N and 3′UTR) do not contribute to severity of anaemia in tuberculosis in the Indonesian population
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor J. J. M. Marx, fax +31 30 2541770, email marx@planet.nl

References

Hide All
World Health Organization (2005) Global Tuberculosis Control: Surveillance, Planning, Financing. WHO Report 2005. WHO/HTM/TB/2005.349. Geneva: WHO.
Flynn, JL & Chan, J (2001) Immunology of tuberculosis. Annu Rev Immunol 19, 93129.
Schaible, UE & Kaufmann, SH (2004) Iron and microbial infection. Nat Rev Microbiol 2, 946953.
Marx, JJ (2002) Iron and infection: competition between host and microbes for a precious element. Best Pract Res Clin Haematol 15, 411426.
Gangaidzo, IT, Moyo, VM, Mvundura, E, et al. (2001) Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis 184, 936939.
Olakanmi, O, Schlesinger, LS & Britigan, BE (2007) Hereditary hemochromatosis results in decreased iron acquisition and growth by Mycobacterium tuberculosis within human macrophages. J Leukoc Biol 81, 195204.
Swinkels, DW, Janssen, MC, Bergmans, J & Marx, JJ (2006) Hereditary hemochromatosis: genetic complexity and new diagnostic approaches. Clin Chem 52, 950968.
Moura, E, Noordermeer, MA, Verhoeven, N, Verheul, AF & Marx, JJ (1998) Iron release from human monocytes after erythrophagocytosis in vitro: an investigation in normal subjects and hereditary hemochromatosis patients. Blood 92, 25112519.
Dijkhuizen, MA, Wieringa, FT, West, CE, Muherdiyantiningsih, & Muhilal, (2001) Concurrent micronutrient deficiencies in lactating mothers and their infants in Indonesia. Am J Clin Nutr 73, 786791.
Bharti, S (2004) Feasibility of ‘directly observed home-based twice-daily iron therapy’ (DOHBIT) for management of anemia in rural patients: a pilot study. Indian J Med Sci 58, 431438.
Bellamy, R, Ruwende, C, Corrah, T, McAdam, KP, Whittle, HC & Hill, AV (1998) Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338, 640644.
Delgado, JC, Baena, A, Thim, S & Goldfeld, AE (2002) Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 186, 14631468.
Soborg, C, Andersen, AB, Madsen, HO, Kok-Jensen, A, Skinhoj, P & Garred, P (2002) Natural resistance-associated macrophage protein 1 polymorphisms are associated with microscopy-positive tuberculosis. J Infect Dis 186, 517521.
Canonne-Hergaux, F, Gruenheid, S, Govoni, G & Gros, P (1999) The NRAMP1 protein and its role in resistance to infection and macrophage function. Proc Assoc Am Physicians 111, 283289.
McDermid, JM & Prentice, AM (2006) Iron and infection: effects of host iron status and the iron-regulatory genes haptoglobin and NRAMP1 (SLC11A1) on host-pathogen interactions in tuberculosis and HIV. Clin Sci (Lond) 110, 503524.
Wieringa, FT, Dijkhuizen, MA, West, CE, Northrop-Clewes, CA & Muhilal, (2002) Estimation of the effect of the acute phase response on indicators of micronutrient status in Indonesian infants. J Nutr 132, 30613066.
Ott, J (1999) Analysis of Human Genetic Linkage. Baltimore, MD and London: The Johns Hopkins University Press.
Falk, A, O'Connor, JB, Pratt, PC, Webb, WR, Wier, JA & Wolinsky, E (1969) Classification of pulmonary tuberculosis. In Diagnostic Standards and Classification of Tuberculosis, 12th ed., pp. 6876. New York: National Tuberculosis and Respiratory Disease Association.
World Health Organization (2004) Assessing the Iron Status of Populations: Report of a Joint WHO/Center for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level. Geneva: WHO.
Ramakrishnan, U (2002) Prevalence of micronutrient malnutrition worldwide. Nutr Rev 60, S46S52.
Das, BS, Thurnham, DI & Das, DB (1997) Influence of malaria on markers of iron status in children: implications for interpreting iron status in malaria-endemic communities. Br J Nutr 78, 751760.
Devi, U, Mohan, RC, Srivastava, VK, Rath, PK & Das, BS (2003) Effect of iron supplementation on mild to moderate anaemia in pulmonary tuberculosis. Br J Nutr 90, 541550.
Lienhardt, C, Fielding, K, Sillah, JS, et al. (2005) Investigation of the risk factors for tuberculosis: a case-control study in three countries in West Africa. Int J Epidemiol 34, 914923.
Karyadi, E, Schultink, W, Nelwan, RH, Gross, R, Amin, Z, Dolmans, WM, van der Meer, JW, Hautvast, JG & West, CE (2000) Poor micronutrient status of active pulmonary tuberculosis patients in Indonesia. J Nutr 130, 29532958.
Goldenberg, AS (1996) Haematological abnormalities and mycobacterial infections. In Tuberculosis, pp. 645652 [Rome, WN and Garay, S, editors]. Boston, MA: Little Brown and Company.
van Lettow, M, Kumwenda, JJ, Harries, AD, Whalen, CC, Taha, TE, Kumwenda, N, Kang'ombe, C & Semba, RD (2004) Malnutrition and the severity of lung disease in adults with pulmonary tuberculosis in Malawi. Int J Tuberc Lung Dis 8, 211217.
van Lettow, M, Harries, AD, Kumwenda, JJ, Zijlstra, EE, Clark, TD, Taha, TE & Semba, RD (2004) Micronutrient malnutrition and wasting in adults with pulmonary tuberculosis with and without HIV co-infection in Malawi. BMC Infect Dis 4, 61.
Kassu, A, Yabutani, T, Mahmud, ZH, et al. (2006) Alterations in serum levels of trace elements in tuberculosis and HIV infections. Eur J Clin Nutr 60, 580586.
Mei, Z, Cogswell, ME, Parvanta, I, Lynch, S, Beard, JL, Stoltzfus, RJ & Grummer-Strawn, LM (2005) Hemoglobin and ferritin are currently the most efficient indicators of population response to iron interventions: an analysis of nine randomized controlled trials. J Nutr 135, 19741980.
Weiss, G & Goodnough, LT (2005) Anemia of chronic disease. N Engl J Med 352, 1011–1023.
Jurado, RL (1997) Iron, infections, and anemia of inflammation. Clin Infect Dis 25, 888–895.
Lounis, N, Truffot-Pernot, C, Grosset, J, Gordeuk, VR & Boelaert, JR (2001) Iron and Mycobacterium tuberculosis infection. J Clin Virol 20, 123–126.
Richard, SA, Zavaleta, N, Caulfield, LE, Black, RE, Witzig, RS & Shankar, AH (2006) Zinc and iron supplementation and malaria, diarrhea, and respiratory infections in children in the Peruvian Amazon. Am J Trop Med Hyg 75, 126132.
Held, MR, Bungiro, RD, Harrison, LM, Hamza, I & Cappello, M (2006) Dietary iron content mediates hookworm pathogenesis in vivo. Infect Immun 74, 289295.
Sazawal, S, Black, RE, Ramsan, M, et al. (2006) Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 367, 133–143.
Clark, TD & Semba, RD (2001) Iron supplementation during human immunodeficiency virus infection: a double-edged sword? Med Hypotheses 57, 476479.
Somoskovi, A, Wade, MM, Sun, Z & Zhang, Y (2004) Iron enhances the antituberculous activity of pyrazinamide. J Antimicrob Chemother 53, 192–196.
Cronje, L, Edmondson, N, Eisenach, KD & Bornman, L (2005) Iron and iron chelating agents modulate Mycobacterium tuberculosis growth and monocyte-macrophage viability and effector functions. FEMS Immunol Med Microbiol 45, 103–112.
Meyer, D (2006) Iron chelation as therapy for HIV and Mycobacterium tuberculosis co-infection under conditions of iron overload. Curr Pharm Des 12, 19431947.
Setianingsih, I, Williamson, R, Marzuki, S, Harahap, A, Tamam, M & Forrest, S (1998) Molecular basis of β-thalassemia in Indonesia: application to prenatal diagnosis. Mol Diagn 3, 11–19.
Lie-Injo, LE, Cai, SP, Wahidijat, I, Moeslichan, S, Lim, ML, Evangelista, L, Doherty, M & Kan, YW (1989) β-Thalassemia mutations in Indonesia and their linkage to β haplotypes. Am J Hum Genet 45, 971975.
Weatherall, DJ & Clegg, JB (2001) Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ 79, 704–712.
Atkinson, PG & Barton, CH (1999) High level expression of Nramp1G169 in RAW264.7 cell transfectants: analysis of intracellular iron transport. Immunology 96, 656–662.
Kuhn, DE, Baker, BD, Lafuse, WP & Zwilling, BS (1999) Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with Nramp1Gly169 or Nramp1Asp169. J Leukoc Biol 66, 113–119.
Li, HT, Zhang, TT, Zhou, YQ, Huang, QH & Huang, J (2006) SLC11A1 (formerly NRAMP1) gene polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 10, 3–12.
Gao, PS, Fujishima, S, Mao, XQ, et al. (2000) Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. International Tuberculosis Genetics Team. Clin Genet 58, 7476.
Liu, W, Cao, WC, Zhang, CY, et al. (2004) VDR and NRAMP1 gene polymorphisms in susceptibility to pulmonary tuberculosis among the Chinese Han population: a case-control study. Int J Tuberc Lung Dis 8, 428434.

Keywords

Related content

Powered by UNSILO

Iron deficiency and NRAMP1 polymorphisms (INT4, D543N and 3′UTR) do not contribute to severity of anaemia in tuberculosis in the Indonesian population

  • Edhyana Sahiratmadja (a1) (a2) (a3), Frank T. Wieringa (a4), Reinout van Crevel (a4), Adriëtte W. de Visser (a3), Iskandar Adnan (a1), Bachti Alisjahbana (a5), Eline Slagboom (a6), Sangkot Marzuki (a1), Tom H. M. Ottenhoff (a2) (a3), Esther van de Vosse (a3) and Joannes J. M. Marx (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.