Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T03:39:32.366Z Has data issue: false hasContentIssue false

The influence of molybdenum on the copper metabolism of the rat at different Cu levels of the diet

Published online by Cambridge University Press:  25 February 2008

H. Nederbragt
Affiliation:
Zootechnical Institute, Department of Animal Nutrition, Faculty of Veterinary Medicine, State University, Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Male WAG/Cpb inbred rats fed on rations with approximately 1–5rng copper/kg (deficient), 6.0 mg Cu/kg (adequate) and 25.0 mg Cu/kg (excess) were supplemented with varying amounts of molybdenum (0, 50, 150 and 500 mg/kg diet) and the effect on the Cu concentration of blood, plasma, liver and kidney, the caeruloplasmin activity of plasma and the Mo concentration of liver and kidney were studied.

2. Mo increased the Cu concentration of blood, plasma, liver and kidney and the Mo concentration of liver and kidney.

3. In the plasma of Mo-supplemented rats the presence of a Cu-containing fraction was demonstrated, the Cu of which did not react with dithiocarbamate and was not related to caeruloplasmin. The Cu in this fraction was not able to increase the caeruloplasmin activity in the plasma of Cu-deficient Mo-supplemented rats. The Cu concentration of the erythrocytes did not seem to have been increased by the Mo treatment.

4. When compared to Cu-adequate rats the effect of Mo on the Cu distribution was reduced both by Cu deficiency and Cu excess. This decreased effect of Mo was explained by reduced uptake or retention of MO in the body as observed in the liver and kidney.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

Alfaro, B. & Heaton, F. W. (1973). Br. J. Nutr. 29, 73.CrossRefGoogle Scholar
Arthur, D. (1965). J. Nutr. 87, 69.CrossRefGoogle Scholar
Bingley, J. B. (1974). Aust. J. agric. Res. 25, 467.CrossRefGoogle Scholar
Blomfield, J. & MacMahon, R. A. (1969). J. clin. Path. 22, 136.CrossRefGoogle Scholar
Bremner, I. (1976). Proc. Nutr. Soc. 35, 21A.Google Scholar
Bremner, I., Hoekstra, W. G., Davies, N. T. & Williams, R. B. (1978). In Trace Element Metabolism in Man and Animals, Vol. 3, p. 44 [Kirchgessner, M., editor]. Freising-Weihensteph: Arbeitskreis Tierenährungsforschung.Google Scholar
Bremner, I. & Young, B. W. (1978). Br. J. Nutr. 39, 325.CrossRefGoogle Scholar
Brinkman, G. A., Miller, R. F. & Engel, R. W. (1961). Proc. Soc. exp. Biol. Med. 107, 666.CrossRefGoogle Scholar
Compère, R., Burny, A., Riga, A., Franwis, E. & Vanuytrecht, S. (1965). J. Nutr. 87, 412.CrossRefGoogle Scholar
Dick, A. T., Dewey, D. W. & Gawthorne, J. M. (1975). J. agric. Sci., Camb. 85, 567.CrossRefGoogle Scholar
Gaballah, S. S., Abood, L. G., Caleed, G. T. & Kapsalis, A. (1965). Proc. Soc. exp. Biol. Med. 120, 733.CrossRefGoogle Scholar
Gaballah, S. S., Abood, L. G., Kapsalis, A. & Sturdivant, D. (1965). Proc. Soc. exp. Biol. Med. 119, 625.CrossRefGoogle Scholar
Gray, L. F. & Daniel, L. J. (1964). J. Nutr. 84, 31.CrossRefGoogle Scholar
Henkin, R. I. (1971).In Newer Trace Elements in Nutrition, p. 255 [Mertz, W. & Cornatzer, W. E., editors]. New York: M. Dekker.Google Scholar
Huisingh, J., Gomez, G. G. & Matrone, G. (1973). Fedn Proc. Fedn Am. Socs exp. Biol. 32, 1921.Google Scholar
Marcilese, N. A., Ammerman, C. B., Valsecchi, R. M., Dunavant, B. G. & Davis, G. K. (1969). J. Nutr. 99, 171.CrossRefGoogle Scholar
Mason, J., Lamand, M., Tressol, J. C. & Lab, C. (1978). Ann. Rech. Vet. 9, 577.Google Scholar
Miller, R. F., Price, N. O. & Engel, R. W. (1956). J. Nutr. 60, 539.CrossRefGoogle Scholar
Mills, C. F., Bremner, I., El-Gallad, T. T., Dalgarno, A. C. & Young, B. W. (1978). In Trace Element Metabolism in Man and Animals, Vol. 3, p. 150 [Kirchgessner, M., editor]. Freising-Weihenstephan: Arbeitskreis Tierenährungsforschung.Google Scholar
Mills, C. F. & Mitchell, R. F. (1971). Br. J. Nutr. 26, 117.CrossRefGoogle Scholar
Murthy, L., Klevay, L. M. & Petering, H. G. (1974). J. Nutr. 104, 1458.CrossRefGoogle Scholar
Owen, C. A. (1964). Am. J. Physiol. 207, 446.CrossRefGoogle Scholar
Sandell, E. B. (1958). Colorimetric Determinationof Trace Metals, 2nd ed.New York: Interscience Publishers Inc.Google Scholar
Smith, B. S. W., Field, A. C. & Suttle, N. F. (1968). J. comp. Path. 78, 449.CrossRefGoogle Scholar
Smith, B. S. W. & Wright, H. (1975 a). J. comp. Path. 85, 299.CrossRefGoogle Scholar
Smith, B. S. W. & Wright, H. (1975 b). Clinica chim. Acta 62, 55.CrossRefGoogle Scholar
Standish, J. F., Ammerman, C. B., Wallace, H. D. & Combs, G. E. (1975). J. anim. Sci. 40, 509.CrossRefGoogle Scholar
Suttle, N. F. (1973). In Trace Substances in Environmental Health, Vol. 7, p. 245 [Hemphill, D. D., editor]. Columbia, Mo.: University of Missouri.Google Scholar
Suttle, N. F. (1974). Proc. Nutr. Soc. 33, 299.CrossRefGoogle Scholar
Suttle, N. F. & Field, A. C. (1968). J. comp. Path. 78, 351.CrossRefGoogle Scholar