Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-21T11:30:47.627Z Has data issue: false hasContentIssue false

Influence of malaria infection on peroxyl-radical trapping capacity in plasma from rural and urban Thai adults

Published online by Cambridge University Press:  09 March 2007

D. I. Thurnham
Affiliation:
Nutrition Studies Group, Clinical Investigation Unit, Dudley Road Hospital, Birmingham B18 7QH
Ratree Singkamani
Affiliation:
Nutrition Studies Group, Clinical Investigation Unit, Dudley Road Hospital, Birmingham B18 7QH
R. Kaewichit
Affiliation:
Nutrition Studies Group, Clinical Investigation Unit, Dudley Road Hospital, Birmingham B18 7QH
Kalaya Wongworapat
Affiliation:
Nutrition Studies Group, Clinical Investigation Unit, Dudley Road Hospital, Birmingham B18 7QH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Measurement of peroxyl-radical trapping capacity (TRAP) were made in plasma from patients with malaria from a rural and an urban Thai community. The results were compared with those from control subjects living in the same areas and chosen to match the patients closely. Measurements were also made of various antioxidants including nutritional indices vitamin C and α-tocopherol and the non-nutritional indices urate and protein-sulphydryl. Parasite counts, temperature on examination and the duration of illness were recorded together with measurements of plasma caeruloplasmin (EC 1.16.3.1), retinol and malondialdehyde (MDA). In general, most measurements made in the villagers were lower than those in the comparable urban groups. The exceptions were caeruloplasmin and MDA when the latter was expressed as MDA: cholesterol ratio. TRAP values were extremely low in 50% of the villagers and 25% of the urban patients with malaria and these results correlated with retinol and vitamin C and inversely with malonaldehyde. The results suggested that low TRAP values are associated with lipid peroxidation and that vitamin C and possibly retinol may be destroyed by the oxidative conditions present in the plasma in this disease.

Type
Infection, Nutrition and Free Radicals
Copyright
Copyright © The Nutrition Society 1990

References

Amatayakul, K., Underwood, B., Ruckphaopunt, S., Singkamani, R., Linpisarn, S., Leelapat, P. & Thanangkul, O. (1989). Oral contraceptives: effect of long-term use on liver vitamin A storage assessed by the relative dose response test. American Journal of Clinical Nutrition 49, 845848.CrossRefGoogle ScholarPubMed
Bhaskaram, P. (1986). Immune response and infection in relation to vitamin A and iron deficiency in children. In Proceedings of XIIIth International Congress of Nutrition, pp. 132135 [Taylor, T. G. and Jenkins, N. K., editors]. London: John Libbey.Google Scholar
Blake, D. R., Merry, P., Unsworth, J., Kidd, B. L., Outhwaite, J. M., Ballard, R., Morris, C. J., Grey, L. & Lunec, J. (1989). Hypoxic-reperfusion injury in the inflamed human joint. Lancet i, 289293.CrossRefGoogle Scholar
Burton, G. W. & Ingold, K. U. (1984). β-Carotene: an unusual type of lipid antioxidant. Science 224, 569573.CrossRefGoogle ScholarPubMed
Clark, I. A. (1987). Cell-mediated immunity in protection and pathology of malaria. Parasitology Today 3, 300305.CrossRefGoogle ScholarPubMed
Clark, I. A., Allison, A. C. & Cox, F. E. (1976). Protection of mice against Babesia and Plasmodium with BCG. Nature 259, 309311.CrossRefGoogle ScholarPubMed
Clark, I. A. & Hunt, N. H. (1983). Evidence for reactive oxygen intermediates causing haemolysis and parasite death in malaria. Infection and Immunity 39, 16.CrossRefGoogle ScholarPubMed
Clark, I. A., Hunt, N. H. & Cowden, W. B. (1986). Oxygen-derived free radicals in the pathogenesis of parasitic disease. Advances in Parasitology 25, 144.CrossRefGoogle ScholarPubMed
Das, B. S., Das, D. B., Satpathy, R. N., Patnaik, J. K. & Bose, T. K. (1988). Riboflavin deficiency and severity of malaria. European Journal of Clinical Nutrition 42, 277283.Google ScholarPubMed
Das, B. S., Thurnham, D. I., Patnaik, J. K., Das, D. B., Satpathy, R. & Bose, T. K. (1990). Increased plasma lipid peroxidation in riboflavin-deficient, malaria-infected children. American Journal of Clinical Nutrition In the Press).CrossRefGoogle ScholarPubMed
Diluzio, N. R. & Kalish, G. H. (1966). Enhanced peroxidation of lipid in the pathogenesis of acute ethanolinduced liver injury. Gastroenterology 50, 392396.Google Scholar
Fleck, A. & Myers, M. A. (1985). Diagnostic and prognostic significance of the acute phase proteins. In The Acute Phase Response to Injury and Infection, pp. 249271 [Gordon, A. H. and Koj, A., editors]. Amsterdam: Elsevier.Google Scholar
Frei, B., Stocker, R. & Ames, B. N. (1988). Antioxidant defenses and lipid peroxidation in human blood plasma. Proceedings of the National Academy of Sciences, USA 85, 97489752.CrossRefGoogle ScholarPubMed
Gey, K. F. (1986). On the antioxidant hypothesis with regard to arteriosclerosis. Bibliotheca Nutritio Dieta 37, 5391.Google Scholar
Gutteridge, J. M. C. (1986). Antioxidant properties of the proteins caeruloplasmin, albumin and transferrin. A study of their activity in serum and synovial fluid from patients with rheumatoid arthritis. Biochimica et Biophysica Acta 869, 119127.CrossRefGoogle ScholarPubMed
Harman, D. (1984). Free radical theory of ageing: the ‘free radical’ diseases. Ageing 7, 111131.Google Scholar
Irwin, M. I. & Hutchins, B. K. (1976). A conspectus of research on vitamin C requirements of man. Journal of Nutrition 106, 821879.CrossRefGoogle ScholarPubMed
Koottathep, S. (1988). Studies on chain-breaking antioxidants. MSc Thesis, University of Birmingham.Google Scholar
Koster, J. F., Biemond, P. & Swaak, A. J. G. (1986). Intracellular and extracellular sulphydryl levels in rheumatoid arthritis. Annals of Rheumatic Diseases 45, 4446.CrossRefGoogle ScholarPubMed
Orringer, E. P. & Roer, M. E. S. (1979). An ascorbate-mediated transmembrane-reducing system of the human erythrocyte. Journal of Clinical Investigation 63, 5358.CrossRefGoogle ScholarPubMed
Satoh, K. (1978). Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta 90, 3743.Google ScholarPubMed
Singkamani, R., Kaewichit, R., Wongworapat, K. & Thurnham, D. I. (1988). Antioxidant capacity in serum of malaria-infected patients. In Proceedings of the XIIth International Congress of Tropical Medicine & Malaria, International Congress Series 810, p. 256 [Karger, P. A. and Polderman, A. M., editors]. Amsterdam: Excerpta Medica.Google Scholar
Slater, T. F. (1984). Free-radical mechanisms in tissue injury. Biochemical Journal 222, 115.CrossRefGoogle ScholarPubMed
Smith, F. R. & Goodman, D. S. (1971). The effect of diseases of the liver, thyroid, and kidneys on the transport of vitamin A in human plasma. Journal of Clinical Investigation 50, 24262436.CrossRefGoogle ScholarPubMed
Sommer, A., Katz, J. & Tarwotjo, I. (1984). Increased risk of respiratory disease and diarrhea in children with preexisting mild vitamin A deficiency. American Journal of Clinical Nutrition 40, 10901095.CrossRefGoogle ScholarPubMed
Thurnham, D. I. (1988). Vitamin C (ascorbic acid): antioxidant functions of vitamin C in disease in man and animals. In Comparative Nutrition, pp. 91103 [Blaxter, K. and Macdonald, I., editors]. London: John Libbey.Google Scholar
Thurnham, D. I. (1989). Vitamin A deficiency and its role in infection. Transactions of the Royal Society of Tropical Medicine 83, 721723.CrossRefGoogle ScholarPubMed
Thurnham, D. I., Davies, J. A., Crump, B. J., Situnayake, R. D. & Davis, M. (1986). The use of different lipids to express serum tocopherol:lipid ratios for the measurement of vitamin E status. Annals of Clinical Biochemistry 23, 514520.CrossRefGoogle ScholarPubMed
Thurnham, D. I. & Flora, P. S. (1988). Stability of carotenoids, retinol and tocopherol in stored plasma. Clinical Chemistry 34, 1947.CrossRefGoogle ScholarPubMed
Thurnham, D. I., Koottathep, S.& Adelekan, D. A. (1988 a). Chain-breaking antioxidants in the blood of malariainfected children. In Free Radicals: Chemistry, Pathology and Medicine, pp. 161183 [Rice-Evans, C. and Dormandy, T., editors]. London: Richelieu Press.Google Scholar
Thurnham, D. I., Situnayake, R. D., Kootathep, B., McConkey, B. & Davis, M. (1987). Antioxidant status measured by the TRAP assay in rheumatoid arthritis. In Free Radicals, Oxidant Stress and Drug Action, pp. 169191 [Rice-Evans, C., editor]. London: Richelieu Press.Google Scholar
Thurnham, D. I., Smith, E. & Flora, P. S. (1988 b). Concurrent liquid-chromatographic assay of retinol, α-tocopherol, β-carotene, α-carotene, lycopene, and β-cryptoxanthin in plasma with tocopherol acetate as internal standard. Clinical Chemistry 34, 377381.CrossRefGoogle ScholarPubMed
Thurnham, D. I. & Stephen, J. M. L. (1979). Biochemical methods: Appendix D. In Nutrition and Health in Old Age, Report on Health and Social Subjects No. 16, pp. 191197. London: H.M. Stationery Office.Google Scholar
Wayner, D. D. M., Burton, G. W., Ingold, K. U., Barclay, L. R. C. & Locke, S. J. (1987). The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochimica et Biophysica Acta 92, 408419.CrossRefGoogle Scholar
Wayner, D. D. M., Burton, G. W., Ingold, K. U. & Locke, S. (1985). Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled lipid peroxidation. FEBS Letters 187, 3337.CrossRefGoogle Scholar
Wozencraft, A. O., Dockrell, H. M., Taverne, J., Targett, G. A. T. & Playfair, J. H. L. (1984). Killing of human malaria parasites by macrophage secretory products. Infection and Immunity 43, 664669.CrossRefGoogle ScholarPubMed