Skip to main content Accessibility help
×
Home

The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig

  • G. K. Collington (a1), D. S. Parker (a1) and D. G. Armstrong (a1)

Abstract

The aim of the present experiment was to determine the influence of either probiotic or antibiotic inclusion in the diets of pigs from birth on the development of enzyme activity in the small intestine. Pigs were fed on creep feed and grower diets containing either a probiotic, an antibiotic or no added growth promoter. At 7, 17, 42 and 80 d of age pigs from each treatment group were sampled to investigate the development of carbohydrase and peptidase activity in the mucosa at five sites along the small intestine. Inclusion of either the probiotic or antibiotic had a significant effect on the development of sucrase (sucrose α-D-glucohydrolase; EC 3.2.1.48), lactase (β-D-galactoside galactohydrolase; EC 3.2.1.23) and tripeptidase (EC 3.4.11.4) activities before weaning but had no effect on depeptidase (EC 3.14.13.11) activity. The study of the distribution of enzyme activity along the small intestine showed significant differences between the proximal and distal sections associated with weaning.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig
      Available formats
      ×

Copyright

References

Hide All
Armstrong, D. G. (1984). Antibiotics as feed additives for ruminant livestock. In Antimicrobials in Agriculture, pp. 331347 [Woodbine, M., editor]. London: Butterworths.
Armstrong, D. G. (1986). Gut active growth promoters. In Control and Manipulation of Animal Growth, Proceedings of the University of Nottingham 43rd Easter School, 1985, pp. 2137 [Buttery, P. J., Lindsay, D. and Haynes, N. B., editors]. London: Butterworths.
Badaway, A. M., Campbell, R. M., Cuthbertson, D. P. & Fell, B. F. (1957). Changes in the intestinal mucosa of the sheep following death by humane killer. Nature 183, 756757.
Baker, R. J. & Nelder, J. A. (1978). Glim System Release 3. Oxford: Numerical Algorithms Group.
Barrow, P. A., Fuller, R. & Newport, M. J. (1977). Changes in the microflora and physiology of the anterior intestinal tract of pigs weaned at 2 days, with special reference to pathogenesis of diarrhea. Infection and Immunity 18, 586595.
Brander, G. C. (1986). Chemicals for Animal Health Control. London: Taylor and Francis Ltd.
Braude, R. (1967). Copper as a growth stimulant in pigs. Animal Production 3, 6975.
Chopra, S. L., Blackwood, A. C. & Dale, D. G. (1963). Intestinal microflora associated with enteritis in early weaned pigs. Canadian Journal of Comparative Medicine 27, 290294.
Collington, G. K., Parker, D. S., Ellis, M. & Armstrong, D. G. (1988). The influence of Probios or Tylosin on growth of pigs and development of the gastrointestinal tract. Animal Production 46, 521522.
Dahlqvist, A. (1964). Method for assay of intestinal disaccharidases. Analytical Biochemistry 7, 1825.
Hampson, D. J. & Kidder, D. E. (1986). Influence of creep feed and weaning on brush border enzyme activities in the piglet small intestine. Research in Veterinary Science 40, 2431.
Hampson, D. J. & Smith, W. C. (1986). Influence of creep feeding and dietary intake after weaning on malabsorption and occurrence of diarrhoea in the newly weaned pig. Research in Veterinary Science 41, 6369.
Josefsson, L. & Lindberg, T. (1965). Intestinal dipeptidases. 11. Distribution of dipeptidases in the small intestine of the pig. Biochimica et Biophysica Acta 105, 162166.
Kidder, D. E. & Manners, M. J. (1976). Carbohydrases in the small intestine mucosa of the pig. Proceedings of the Nutrition Society 35, 26A.
Kidder, D. E. & Manners, M. J. (1978). Carbohydrases in the small intestine mucosa of sow-reared and 3-week weaned piglets. Proceedings of the Nutrition Society 37, 51A.
Kidder, D. E. & Manners, M. J. (1980). The level and distribution of carbohydrases in the small intestine mucosa of pigs from 3 weeks of age to maturity. British Journal of Nutrition 43, 141153.
McCarthy, D. M. & Kim, Y. S. (1973). Changes in sucrase, enterokinase and peptide hydrolase after intestinal resection. The association of cellular hyperplasia and adaption. Journal of Clinical Investigation 52, 942951.
McCracken, K. J. (1984). Effect of diet composition on digestive development of early-weaned pigs. Proceedings of the Nutrition Society 43, 109A.
McCracken, K. J. & Kelly, D. (1984). Effect of diet and post-weaning food intake on digestive development of early-weaned pigs. Proceedings of the Nutrition Society 43, 110A.
Manners, M. J. & Stevens, J. A. (1972). Changes from birth to maturity in the pattern of distribution of lactase and sucrase activity in the mucosa of the small intestine of pigs. British Journal of Nutrition 28, 113127.
Metchnikoff, E. (1908). Prolongation of Life. New York: G. P. Putnam and Sons.
Miller, B. G., James, P. S., Smith, M. W. & Bourne, F. J. (1986). Effect of weaning on the capacity of pig intestinal villi to digest and absorb nutrients. Journal of Agricultural Science, Cambridge 107, 579589.
Morishita, Y. & Ogata, M. (1970). Studies on the alimentary flora of pigs v. influence of starvation on the microbial flora. Japanese Journal of Veterinary Sciences 32, 1924.
Nicholson, J. A. & Kim, Y. S. (1975). A one-step L-amino acid oxidase assay for intestinal peptide hydrolase activity. Analytical Biochemistry 63, 110117.
Peters, T. J. (1970). The subcellular localization of di- and tripeptide hydrolase activity in guinea-pig small intestine. Biochemical Journal 120, 195203.
Peters, T. J. (1977). Subcellular distribution of di- and tripeptidase in human jejunum. Clinical Science and Molecular Medicine 52, 16P.
Richardson, R. I. & Jouan, A. R. P. (1986). The distribution of peptidase activity in the small intestine of sheep. British Journal of Nutrition 55, 149156.
Rosen, G. D. (1984). Performance promoters in animal nutrition: (ii) methods of comparison of effectiveness. In Antimicrobials and Agriculture, pp. 303313 [Woodbine, M., editor]. London: Butterworths.
Siddons, R. C. & Coates, M. (1972). The influence of the intestinal microflora on disaccharidase activities in the chick. British Journal of Nutrition 27, 101112.
Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B. K., Cerda, J. J. & Crane, R. K. (1973). Purification of the human intestinal brush border membrane. Biochimica et Biophysica Acta 323, 98112.
Smith, H. W. (1965). Observations on the flora of the alimentary tract of animals and factors affecting its composition. Journal of Pathology and Bacteriology 89, 95122.
Smith, M. W. (1984). Effect of postnatal development and weaning upon the capacity of pig intestinal villi to transport alanine. Journal of Agricultural Science, Cambridge 102, 625633.
Stevens, J. A. & Kidder, D. E. (1972). The distribution of trehalase, sucrase, amylase, glucoamylase and lactase (β-galactosidase) along the small intestine of five pigs. British Journal of Nutrition 28, 129137.
Szabo, J. (1979). Protein, carbohydrate and fat degrading enzymes in the intestine of germ-free and conventional piglets. In Clinical and Experimental Gnotobiotics, p. 125 [Fliedner, T., Heit, H., Niethammer, D. and Pflieger, H., editors]. Stuttgart and New York: Fischer Verlag.
Tannock, G. W. (1983). Effect of dietary and environmental stress on the gastrointestinal microbiota. In Human Intestinal Microflora in Health and Disease, pp. 517539 [Hertges, D. J., editor]. London: Academic Press.
Visek, W. J. (1978). The mode of growth promotion by antibiotics. Journal of Animal Science 46, 14471469.

Keywords

The influence of inclusion of either an antibiotic or a probiotic in the diet on the development of digestive enzyme activity in the pig

  • G. K. Collington (a1), D. S. Parker (a1) and D. G. Armstrong (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed