Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T14:08:07.322Z Has data issue: false hasContentIssue false

The influence of dietary iron and molybdenum on copper metabolism in calves

Published online by Cambridge University Press:  09 March 2007

W. R. Humphries
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, Scotland
M. Phillippo
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, Scotland
B. W. Young
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, Scotland
I. Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Twenty heifer calves were allocated to four groups and maintained for 32 weeks on a diet based mainly on barley and straw and containing 4 mg copper/kg. The diet was supplemented with 0 or 800 mg iron/kg and 0 or 5 mg molybdenum/kg.

2. Liver and plasma Cu concentrations, erythrocyte superoxide dismutase (EC 1.15.1.1) and plasma caeruloplasmin (EC 1.16.3.1) activities decreased greatly and rapidly in all calves given the Fe or Mo supplements or both. Levels indicative of severe Cu deficiency were attained within 16 weeks. There were no significant differences in values in animals given Fe, Mo or Fe plus Mo.

3. Clinical signs of Cu deficiency developed after 20 weeks in the calves given the Mo supplement. Growth rates were reduced, skeletal lesions developed and hair texture and colour were affected. No such effects were observed in the calves given only the Fe supplement.

4. Plasma and liver Fe concentrations increased in calves given the Fe supplement but were not greatly affected by Mo, even when the calves were severely Cu-deficient.

5. The significance of the effects of Fe and Mo on Cu metabolism are discussed with special regard to the influence of soil ingestion on Cu availability and to the frequent lack of correlation between the Cu status of animals and their clinical condition.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Agricultural Research Council (1976). The Nutrient Requirements of Livestock, no. 4, Composition of British Feedingstuffs. London: Agricultural Research Council.Google Scholar
Beauchamp, C. & Fridovich, I. (1971). Analyt. Biochem. 44, 276.CrossRefGoogle Scholar
Bingley, J. B. (1959). J. agric. Fd Chem. 7, 269.CrossRefGoogle Scholar
Bremner, I. & Davies, N. T. (1980). In Digestive Physiology and Metabolism in Ruminants, p. 409 [Ruckebusch, Y. & Thivend, P., editors]. Lancaster: MTP Press Ltd.Google Scholar
Bremner, I., Mills, C. F. & Young, B. W. (1982). J. inorg. Biochem. 16, 109.CrossRefGoogle Scholar
Bremner, I. & Young, B. W. (1978). Br. J. Nutr. 39, 325.CrossRefGoogle Scholar
Bremner, I. & Young, B. W. (1981). Proc. Nutr. Soc. 40, 69A.Google Scholar
Bremner, I., Young, B. W. & Mills, C. F. (1982). Proc. Nutr. Soc. 41, 82A.Google Scholar
Campbell, A. G., Coup, M. R., Bishop, W. H. & Wright, D. E. (1974). N.Z. Jl agric. Res. 17, 393.CrossRefGoogle Scholar
Coup, M. R. & Campbell, A. G. (1964). N.Z. Jl agric. Res. 7, 624.CrossRefGoogle Scholar
Grun, M., Anke, M., Hennig, A., Seffner, W., Partschefeld, M., Flachowsky, G. & Groppel, B. (1978). Archiv für Tierernährung 28, 341.CrossRefGoogle Scholar
Healy, W. B. (1972). N.Z. Jl agric. Res. 15, 289.CrossRefGoogle Scholar
Hedges, J. D. & Kornegay, E. T. (1973). J. Anim. Sci. 37, 1147.CrossRefGoogle Scholar
Humphries, W. R., Young, B. W., Phillippo, M. & Bremner, I. (1981). Proc. Nutr. Soc. 40, 68A.Google Scholar
Kennedy, R. P. (1927). J. biol. Chem. 74, 385.CrossRefGoogle Scholar
McMurray, C. H. (1980). In Biological Roles of Copper, Ciba Fdn Symp. no. 79, p. 183 [Evered, D. and Lawrenson, G., editors]. Amsterdam: Excerpta Medica.Google Scholar
Mason, J., Lamand, M., Tressol, J. C. & Lab, C. (1978). Ann. Rech. Vet. 9, 577.Google Scholar
Mills, C. F. (1980). In Biological Roles of Copper, Ciba Fdn Symp. no. 79, p. 49 [Evered, D. and Lawrenson, G., editors]. Amsterdam: Excerpta Medica.Google ScholarPubMed
Mills, C. F., Dalgarno, A. C., Bremner, I. & El-Gallad, T. T. (1977). Proc. Nutr. Soc. 36, 105A.Google Scholar
Mills, C. F., Dalgarno, A. C. & Wenham, G. (1976). Br. J. Nutr. 35, 309.CrossRefGoogle Scholar
Mills, C. F., El-Gallad, T. T. & Bremner, I. (1981). J. inorg. Biochem. 14, 189.CrossRefGoogle Scholar
Mills, C. F., El-Gallad, T. T., Bremner, I. & Wenham, G. (1981). J. inorg. Biochem. 14, 163.CrossRefGoogle Scholar
Phillippo, M., Humphries, W. R., Bremner, I. & Young, B. W. (1982). Proc. Nutr. Soc. 41, 80A.Google Scholar
Quin, B. F. & Woods, P. H. (1979). Analyst, Lond. 104, 552.CrossRefGoogle Scholar
Roberts, H. E. (1976). Vet. Rec. 99, 496.CrossRefGoogle Scholar
Ruutu, R. (1975). Clinica chim. Acta 61, 229.CrossRefGoogle Scholar
Smith, B. P., Fisher, G. L., Poulos, P. W. & Irwin, M. R. (1975). J. Am. vet. med. Ass. 166, 682.Google Scholar
Smith, B. S. W. & Wright, H. (1974). Clin. Chim. Acta, 50, 359.CrossRefGoogle Scholar
Smith, C. H. & Bidlack, W. R. (1980). J. Nutr. 110, 1398.CrossRefGoogle Scholar
Standish, J. F., Ammerman, C. B., Palmer, A. Z. & Simpson, C. F. (1971). J. Anim. Sci. 33, 171.Google Scholar
Standish, J. F., Ammerman, C. B., Simpson, C. F., Neal, F. C. & Palmer, A. Z. (1969). J. Anim. Sci. 29, 496.CrossRefGoogle Scholar
Suttle, N. F. (1975). Br. J. Nutr. 34, 411.CrossRefGoogle Scholar
Suttle, N. F., Alloways, B. J. & Thornton, I. (1975). J. agr. Sci., Camb. 84, 249.CrossRefGoogle Scholar