Skip to main content Accessibility help
×
Home

Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats

  • Christophe Lay (a1), Malène Sutren (a1), Pascale Lepercq (a1), Catherine Juste (a1), Lionel Rigottier-Gois (a1), Evelyne Lhoste (a1), Riwanon Lemée (a2), Pascale Le Ruyet (a2), Joël Doré (a1) and Claude Andrieux (a1)...

Abstract

The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR–temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 105–108 bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, α and β-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: fax +33 1 34 652492, Email andrieux@jouy.inra.fr

References

Hide All
Andrieux, C, Lory, S, Dufour-Lescoat, Cde Baynast, R & Szylit, OPhysiological effects of inulin in germ-free rats and in heteroxenic rats inoculated with a human flora. Food Hydrocolloid (1991) 5, 4956
Andrieux, C, Membre, JM, Cayuela, C & Antoine, JMMetabolic characteristics of the fecal microflora in humans from three age groups. Scand J Gastroenterol (2002) 7, 792798
Bartram, HP, Sheppach, W, Gerlach, SRuckdeschel, G, Kelber, E & Kasper, HDoes yogurt enriched with Bifidobacterium longum affect colonic microbiology and fecal metabolism in healthy subjects?. Am J Clin Nutr (1994) 59, 428432
Bezkorovainy, AProbiotics: determinants of survival and growth in the gut. Am J Clin Nutr (2001) 73, 399S405S
Blaut, M, Collins, MD, Welling, GW, Doré, Jvan Loo, J & de Vos, WMolecular biological methods for studying the gut microbiota: the EU human gut flora project. Br J Nutr (2002) 87, S203S211
Cohen, BI, Raicht, RF, Deschner, EETakahashi, M, Sarwal, AN & Fazzini, EEffect of cholic acid feeeding on N -methyl- N -nitrosourea-induced colon tumors and cell kinetics in rats. J Natl Cancer Inst (1980) 64, 573578
De Roos, NM & Katan, MBEffects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers between 1988 and 1998. Am J Clin Nutr (2000) 71, 405411
Djouzi, Z, Andrieux, C, Degivry, MC, Bouley, C & Szylit, OThe association of yogurt starters with Lactobacillus casei DN 114.001 in fermented milk alters the composition and metabolism of intestinal microflora in Germ-free rats and in human flora-associated rats. J Nutr (1997) 127, 22602266
Drospy, G & Boy, JDétermination de l'ammoniémie (méthode automatique par dialyse) (Determination of ammonia in the blood (automatic method using dialysis). Ann Biol Clin (Paris) (1961) 19, 313318
Earnest, DL, Holubec, H, Wali, RK, Jolley, CS, Bissonette, M, Bhattacharyya, AK, Roy, H, Khare, S & Brasitus, TAChemoprevention of azoxymethane-induced colonic carcinogenesis by supplemented dietary ursodeoxycholic acid. Cancer Res (1994) 54,50715074
Godon, JJ, Zumstein, E, Dabert, P, Habouzit, F & Moletta, RDiversity of microbial genes encoding small-subunit rRNA in an anerobic digestor. Appl Environ Microbiol (1997) 63, 28022813
Goldin, BRHealth benefits of probiotics. Br J Nutr (1998) 80, S203S207
Guérin-Danan, C, Chabanet, C, Pedone, C, Popot, F, Vaissade, P, Bouley, C, Szylit, O & Andrieux, CMilk fermented with yogurt cultures and Lactobacillus casei compared with yogurt and gelled milk: influence on intestinal microflora in healthy infants. Am J Clin Nutr (1998) 67, 111117
Heyman, M & Ménard, SProbiotic microorganisms: how they affect intestinal pathophysiology. Cell Mol Life Sci (2002) 59, 11511165.
Lenoir, J, Lamberet, G & Schmidt, JLL'élaboration d'un fromage: l'exemple du Camembert (Cheese making: example of Camembert). Pour la Science, Dossier hors série, March, (1995) pp. 6473
Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJProtein measurement with the Folin-phenol reagent. J Biol Chem (1951) 193, 265275
Macfarlane, GT & Cummings, JH (1991) The colonic flora, fermentation and large bowel digestive function. In The Large Intestine: Physiology, Pathophysiology and Disease, pp 5192 [Phillips, SF, Pemberton, JH & Shorter, RG editors]. New York: Raven Press.
Marteau, Ph, Pochard, Ph, Bouhnik, Y & Rambaud, JCSurvie et effets de lactobacilles acidophiles et bifidobactéries de produits laitiers fermentés dans le tube digestif de l'homme (Survival and effects of acidophilic lactobacilli and bifidobacteria from fermented milk products in the human digestive tract). Cah Nutr Diét (1994) 6, 336340
Marteau, P, Seksik, P & Jian, RProbiotics and intestinal health effects: a clinical perspective. Br J Nutr (2002) 88, S51S57.
Martinez, JD, Stratagoules, ED, LaRue, JM, Powell, AA, Gause, PR, Craven, MT, Payne, CM, Powell, MBGerner, EW & Earnest, DLDifferent bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr Cancer (1998) 3, 111118
Milkiewicz, P, Roma, MG, Elias, E & Coleman, RHepatoprotection with tauroursodeoxycholate and betammuricholate against taurolithocholate induced cholestasis: involvement of signal transduction pathways. Gut 2002) 51, 113119
Milovic, V, Teller, IC, Murphy, GM, Caspary, WF & Stein, JDeoxycholic acid stimulates migration in colon cancer cells. Eur J Gastroenterol Hepatol (2001) 13, 945949
Reid, GThe scientific basis for probiotics strains of Lactobacillus. Appl Environ Microbiol (1999) 65, 37633768
Rumney, CJ & Rowland, IRIn vivo and in vitro models of the human colonic flora. Crit Rev Food Sci Nutr (1992) 31, 299331
Satokari, RM, Vaughan, EE, kkermans, ADL, Saarela, M & De Vos, WMBifidobacterial diversity in human feces detected by genus-specific PCR and denaturating gradiant gel electrophoresis. Appl Environ Microbiol (2001) 67, 504513
Salminen, S, Bouley, C, Boutron-Ruault, MC, Cummins, JH, Franck, A, Gibson, GR, Isoluari, E, Moreau, MC, Roberfroid, M & Rowland, IFunctional food science and gastrointestinal physiology and function. Br J Nutr (1998) 80, S147S171
Sanders, MESummary of conclusions from a consensus panel of experts on health attributes of lactic cultures: significance to fluid milk products containing cultures. J Dairy Sci (1993) 76, 18191828
Seksik, P, Rigottier-Gois, L, Gramet, G, Sutren, M, Pochart, P, Marteau, P, Jian, R & Doré, JAlterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut (2003) 52, 237242
Stanton, C, Gardiner, G, Lynch, PB, Collins, JK, Fitzgerald, G & Ross, RPProbiotic cheese. Int Dairy J (1998) 8, 491496
Suau, A, Bonnet, R, Sutren, M, Godon, JJ, Gibson, GR, Collins, MD & Doré, JDirect analysis of genes endocoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol (1999) 65, 47994807
Tannock, GW, Munro, K, Harmsen, HJM, Welling, GM, Smart, J & Gopal, PKAnalysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol (2000) 66, 25782588
Walter, J, Hertel, C, Tannock, GW, Lis, CM, Munro, K & Hammes, WPDetection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-pecific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol (2001) 67, 25782585
Zoetendal, EG, Akkermans, ADL & De Vos, WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and hosts specific communities of active bacteria. Appl Environ Microbiol 64, 38543859

Keywords

Related content

Powered by UNSILO

Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats

  • Christophe Lay (a1), Malène Sutren (a1), Pascale Lepercq (a1), Catherine Juste (a1), Lionel Rigottier-Gois (a1), Evelyne Lhoste (a1), Riwanon Lemée (a2), Pascale Le Ruyet (a2), Joël Doré (a1) and Claude Andrieux (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.