Skip to main content Accessibility help
×
Home

The glycaemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars*

  • Janette Brand Miller (a1), Edna Pang (a1) and Louise Broomhead (a1)

Abstract

The primary aim of the present study was to expand the glycaemic index (GI) database by determining the GI and insulin index values of thirty-nine foods containing sugars in healthy adults. The second aim was to examine the hypothesis that glycaemic and insulin responses to foods which contain added sugar(s) are higher than responses to foods containing naturally-occurring sugars. Eight healthy subjects drawn from a pool of eighteen consumed 50 g carbohydrate portions (except 25 g carbohydrate portions for fruits) of the test foods. The GI and insulin index were determined according to standardized methodology and expressed on a scale on which glucose = 100. The median GI and insulin index values of all foods tested were 56 (range 14 to 80) and 56 (range 24 to 124) respectively. The median GI of the foods containing added sugars was similar to that of foods containing naturally-occurring sugars (58 v. 53 respectively, P = 0·08). Likewise, the median insulin index of the foods containing added sugars was not significantly different from that of foods containing naturally-occurring sugars (61 v. 56 respectively, P = 0·16). There was no evidence of‘rebound hypoglycaemia’or excessive insulin secretion relative to the glucose response. We conclude that most foods containing sugars do not have a high GI. In addition, there is often no difference in responses between foods containing added sugars and those containing naturally-occurring sugars.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The glycaemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars*
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The glycaemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars*
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The glycaemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars*
      Available formats
      ×

Copyright

References

Hide All
Baghurst, K. I., Record, S. J., Syrette, J. A., Crawford, D. A. & Baghurst, P. A. (1989). Intakes and sources of a range of dietary sugars in various Australian populations. Medical Journal of Australia 151, 512528.
Bornet, F. R. J., Costagliola, D., Rizkalla, S. W., Blayo, A., Fontvieille, A. M., Haardt, M. J., Letanoux, M., Tchobroutsky, G. & Slama, G. (1987). Insulinemic and glycemic indexes of six starch-rich foods taken alone and in a mixed meal by type 2 diabetics. American Journal of Clinical Nutrition 45, 588595.
Brand, J. C., Nicholson, P. L., Thorburn, A. W. & Truswell, A. S. (1985). Food processing and the glycemic index. American Journal of Clinical Nutrition 42, 11921196.
Brand Miller, J. (1994). Invited editorial. The glycaemic index of foods. Asia Pacific Journal of Clinical Nutrition 2, 107110.
Brand Miller, J. & Lobbezoo, I. (1994). Replacing starch with sucrose in a high glycaemic index breakfast cereal lowers glycaemic and insulin responses. European Journal of Clinical Nutrition 48, 749752.
Chew, I., Brand, J. C., Thorburn, A. W. & Truswell, A. S. (1988). Application of glycaemic index to mixed meals. American Journal of Clinical Nutrition 47, 5356.
DeFronzo, R. A., Bonadonna, R. C. & Ferrannini, E. (1992). Pathogenesis of NIDDM - a balanced overview. Diabetes Care 15, 318368.
Delarue, J., Normand, S., Pachiaudi, C., Beylot, M., Lamisse, F. & Riou, J. P. (1993). The contribution of naturally labelled 13C-fructose to glucose appearance in humans. Didetologia 36, 338345.
Department of Health (1989). Dietary Sugars and Human Disease. Report of the Panel on Dietary Sugars. Report on Health and Social Subjects no. 37. London: H.M. Stationery Office.
Dixon, W. J. (1953). Critical ratios for testing an extreme value in a set of measurements. Biometrics 9, 7476.
English, R. & Lewis, J. (1991). Nutritional Values of Australian Foods. Canberra: Australian Government Printing Service.
Glinsmann, W. H., Irausquin, H. & Park, Y. K. (1986). Evaluation of health aspects of sugars Contained in carbohydrate sweeteners. Journal of Nutrition 116, S5216.
Holt, S., Brand, J. C., Soveny, C. & Hansky, J. (1992). Relationship of satiety to postprandial glycemic, insulin and cholecystokinin responses. Appetite 18, 129141.
Jenkins, D. J. A., Wolever, T. M. S. & Jenkins, A. L. (1988). Starchy foods and glycemic index. Diabetes Care 11, 149159.
Jenkins, D. J. A., Wolever, T. M. S., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L. & Goff, D. V. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. American Journal of Clinical Nutrition 34, 362366.
Lyons, P. M. & Truswell, A. S. (1988). Serotonin precursor influenced by type of carbohydrate meal in healthy adults. American Journal of Clinical Nutrition 47, 433439.
Nuttall, F. Q., Mooradian, A. D., Gannon, M. C., Billington, C. & Krezowski, P. (1984). Effect of protein ingestion on the glucose and insulin response to a standardised oral glucose load. Diabetes Care 7, 465470.
Southgate, D. A. T., Paul, A. A., Dean, A. C. & Christie, A. A. (1978). Free sugars in foods. Journal of Human Nutrition 32, 335347.
Thomas, D. E., Brotherhood, J. R. & Brand, J. C. (1991). Carbohydrate feeding before exercise: effect of glycemic index. International Journal of Sports Medicine 12, 180186.
Wolever, T. M. S., Jenkins, D. J. A., Jenkins, A. L. & Josse, R. G. (1991). The glycemic index: methodology and clinical implications. American Journal of Clinical Nutrition 54, 846854.
Wolever, T. M. S., Nguyen, P.-M., Chiasson, J.-L., Hunt, J. A., Josse, R. G., Palmason, C., Rodger, N. W., Ross, S. A., Ryan, E. A. & Tan, M. H. (1994). Determinants of diet glycemic index calculated retrospectively from diet records of 342 individuals with non-insulin-dependent diabetes mellitus. American Journal of Clinical Nutrition 59, 12651269.

Keywords

The glycaemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars*

  • Janette Brand Miller (a1), Edna Pang (a1) and Louise Broomhead (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed