Skip to main content Accessibility help
×
Home

The α-glucosidase inhibitor miglitol suppresses postprandial hyperglycaemia and interleukin-1β and tumour necrosis factor-α gene expression in rat peripheral leucocytes induced by intermittent sucrose loading

  • Yutaro Tanaka (a1), Kazuki Mochizuki (a1), Nanae Fukaya (a1), Masaya Shimada (a1) and Toshinao Goda (a1)...

Abstract

Postprandial hyperglycaemia is thought to increase inflammation in leucocytes. In the present study, we examined whether sucrose loading in rats with moderate postprandial hyperglycaemia induces the expression of cytokines in peripheral leucocytes and whether these inductions are suppressed by inhibiting postprandial hyperglycaemia with the α-glucosidase inhibitor miglitol. One group of streptozotocin-treated rats and age-matched saline-treated rats were orally administered sucrose only, and another group of streptozotocin-treated rats was administered sucrose with miglitol, at a single daily dose for 4 d, under 4 h fasting conditions. Blood glucose levels at 0, 0·25, 0·5, 1, 2 and 3 h and cytokine mRNA in peripheral leucocytes at 0 and 3 h after sucrose loading on days 1 and 4 from the start of sucrose loading were determined. Streptozotocin-treated rats showed moderate postprandial hyperglycaemia (>2000 mg/l) at 0·25–1 h after sucrose loading on days 1 and 4. Postprandial hyperglycaemia was not observed in the miglitol-treated rats loaded with sucrose. Gene expression levels of IL-1β and TNF-α were higher in the streptozotocin-treated rats at fasting on day 1 than in saline-treated rats. Fasting IL-1β and TNF-α gene expression on day 1 were not only increased at 3 h on the same day of sucrose loading, but was also increased at the fasting period on day 4. These inductions on day 4 by intermittent sucrose administration were inhibited by miglitol. The present results suggest that miglitol decreases postprandial hyperglycaemia and intermittent sucrose-induced expression of the IL-1β and TNF-α genes in rat peripheral leucocytes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The α-glucosidase inhibitor miglitol suppresses postprandial hyperglycaemia and interleukin-1β and tumour necrosis factor-α gene expression in rat peripheral leucocytes induced by intermittent sucrose loading
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The α-glucosidase inhibitor miglitol suppresses postprandial hyperglycaemia and interleukin-1β and tumour necrosis factor-α gene expression in rat peripheral leucocytes induced by intermittent sucrose loading
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The α-glucosidase inhibitor miglitol suppresses postprandial hyperglycaemia and interleukin-1β and tumour necrosis factor-α gene expression in rat peripheral leucocytes induced by intermittent sucrose loading
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Toshinao Goda, fax +81 54 264 5565, email gouda@fns1.u-shizuoka-ken.ac.jp

References

Hide All
1Shoelson, SE, Lee, J & Goldfine, AB (2006) Inflammation and insulin resistance. J Clin Invest 116, 17931801.
2Lu, L, Zhang, Q, Pu, LJ, et al. (2007) Elevation of tumor necrosis factor-α, interleukin-1β and interleukin-6 levels in aortic intima of Chinese Guizhou minipigs with streptozotocin-induced diabetes. Chin Med J (Engl) 120, 479484.
3Wen, Y, Gu, J, Li, SL, et al. (2006) Elevated glucose and diabetes promote interleukin-12 cytokine gene expression in mouse macrophages. Endocrinology 147, 25182525.
4Hui, H, Dotta, F, Di Mario, U, et al. (2004) Role of caspases in the regulation of apoptotic pancreatic islet β-cells death. J Cell Physiol 200, 177200.
5Jorns, A, Gunther, A, Hedrich, HJ, et al. (2005) Immune cell infiltration, cytokine expression, and β-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes 54, 20412052.
6Montolio, M, Biarnes, M, Tellez, N, et al. (2007) Interleukin-1β and inducible form of nitric oxide synthase expression in early syngeneic islet transplantation. J Endocrinol 192, 169177.
7Hoge, M & Amar, S (2006) Role of interleukin-1 in bacterial atherogenesis. Drugs Today (Barc) 42, 683688.
8Mahmoudi, M, Curzen, N & Gallagher, PJ (2007) Atherogenesis: the role of inflammation and infection. Histopathology 50, 535546.
9Spranger, J, Kroke, A, Mohlig, M, et al. (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52, 812817.
10Kim, ES, Im, JA, Kim, KC, et al. (2007) Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity (Silver Spring) 15, 30233030.
11Bruun, JM, Stallknecht, B, Helge, JW, et al. (2007) Interleukin-18 in plasma and adipose tissue: effects of obesity, insulin resistance, and weight loss. Eur J Endocrinol 157, 465471.
12Bonora, E (2002) Postprandial peaks as a risk factor for cardiovascular disease: epidemiological perspectives. Int J Clin Pract Suppl 129, 511.
13Jellema, A, Plat, J & Mensink, RP (2004) Weight reduction, but not a moderate intake of fish oil, lowers concentrations of inflammatory markers and PAI-1 antigen in obese men during the fasting and postprandial state. Eur J Clin Invest 34, 766773.
14Gill, JM, Al-Mamari, A, Ferrell, WR, et al. (2004) Effects of prior moderate exercise on postprandial metabolism and vascular function in lean and centrally obese men. J Am Coll Cardiol 44, 23752382.
15Kempf, K, Rose, B, Herder, C, et al. (2007) The metabolic syndrome sensitizes leukocytes for glucose-induced immune gene expression. J Mol Med 85, 389396.
16Goda, T, Suruga, K, Komori, A, et al. (2007) Effects of miglitol, an α-glucosidase inhibitor, on glycaemic status and histopathological changes in islets in non-obese, non-insulin-dependent diabetic Goto-Kakizaki rats. Br J Nutr 98, 702710.
17Puls, W, Krause, HP, Muller, L, et al. (1984) Inhibitors of the rate of carbohydrate and lipid absorption by the intestine. Int J Obes 8 Suppl., 1, 181190.
18Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402408.
19Prins, JB (2002) Adipose tissue as an endocrine organ. Best Pract Res Clin Endocrinol Metab 16, 639651.
20Flanagan, AM, Brown, JL, Santiago, CA, et al. (2007) High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. J Nutr Biochem 19, 505513.
21Nakamura, K, Yamagishi, S, Matsui, T, et al. (2005) Acarbose, an α-glucosidase inhibitor, improves insulin resistance in fructose-fed rats. Drugs Exp Clin Res 31, 155159.
22Rachmani, R, Bar-Dayan, Y, Ronen, Z, et al. (2004) The effect of acarbose on insulin resistance in obese hypertensive subjects with normal glucose tolerance: a randomized controlled study. Diabetes Obes Metab 6, 6368.
23Koyama, M, Wada, R, Mizukami, H, et al. (2000) Inhibition of progressive reduction of islet β-cell mass in spontaneously diabetic Goto-Kakizaki rats by α-glucosidase inhibitor. Metabolism 49, 347352.
24Chiasson, JL (2006) Acarbose for the prevention of diabetes, hypertension, and cardiovascular disease in subjects with impaired glucose tolerance: the Study to Prevent Non-Insulin-Dependent Diabetes Mellitus (STOP-NIDDM) Trial. Endocr Pract 12 Suppl., 1, 2530.
25Chiasson, JL, Josse, RG, Gomis, R, et al. (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359, 20722077.
26Mita, T, Otsuka, A, Azuma, K, et al. (2007) Swings in blood glucose levels accelerate atherogenesis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 358, 679685.
27Giugliano, D, Ceriello, A & Esposito, K (2008) Glucose metabolism and hyperglycemia. Am J Clin Nutr 87, 217S222S.
28Chiasson, JL, Josse, RG, Gomis, R, et al. (2003) Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 290, 486494.
29Zeymer, U, Schwarzmaier-D'assie, A, Petzinna, D, et al. (2004) Effect of acarbose treatment on the risk of silent myocardial infarctions in patients with impaired glucose tolerance: results of the randomised STOP-NIDDM trial electrocardiography substudy. Eur J Cardiovasc Prev Rehabil 11, 412415.

Keywords

The α-glucosidase inhibitor miglitol suppresses postprandial hyperglycaemia and interleukin-1β and tumour necrosis factor-α gene expression in rat peripheral leucocytes induced by intermittent sucrose loading

  • Yutaro Tanaka (a1), Kazuki Mochizuki (a1), Nanae Fukaya (a1), Masaya Shimada (a1) and Toshinao Goda (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed