Skip to main content Accessibility help
×
Home

Gastro-jejunal digestion of soya-bean-milk protein in humans

  • Agnes Baglieri (a1), Sylvain Mahe (a1), Semia Zidi (a2), Jean-Francois Huneau (a1), Francois Thuillier (a2), Philippe Marteau (a2) and Daniel Tome (a1)...

Abstract

In order to determine how soya-bean proteins are digested and metabolized in the human intestine before colonic bacterial fermentation and to estimate their true digestibility, the gastro-jejunal behaviour of soya-bean proteins in water and in two other forms (a concentrated soya-bean-protein solution (isolate) and a drink composed of crude soya-bean proteins (soymilk)) was studied in humans. Experiments were carried out in eight healthy volunteers using a double-lumen steady-state intestinal perfusion method with polyethyleneglycol (PEG) as a non-absorbable volume marker. Gastric emptying and N and electrolyte contents of the jejunal digesta were analysed. Gastric half-emptying time (min) of the liquid phase after water ingestion (12·59 (SE 0·12)) was shorter (P < 0.05) than those for soymilk (37·74 (SE 11·57)) and isolate (36·52 (SE 11·23)). Electrolytic balances showed that for all meals, Na+, Cl and K+ were secreted when Ca2+ was efficiently absorbed from the jejunal lumen. Gastro-jejunal N absorption for isolate and soymilk were 63 and 49% respectively, and were not significantly different from one another; after water ingestion, endogenous N was estimated to be 21 mmol. An estimate of the exogenous: endogenous values for the effluents was obtained from the amino acid compositions of soymilk and effluents after water or soymilk ingestion, indicating that 70% of the total N was exogenous and 30% endogenous. Under these conditions the endogenous fraction represented 31 mmol after soymilk ingestion and the gastro-jejunal N balance indicated that 54% of the soymilk was absorbed. This finding indicates that the true gastro-jejunal digestibility of soya-bean proteins is similar to that of milk proteins.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Gastro-jejunal digestion of soya-bean-milk protein in humans
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Gastro-jejunal digestion of soya-bean-milk protein in humans
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Gastro-jejunal digestion of soya-bean-milk protein in humans
      Available formats
      ×

Copyright

References

Hide All
Beer, W. H., Murray, E., Oh, S. H., Pedersen, H. E., Wolfe, R. R. & Young, V. R. (1989). A long-term metabolic study to assess the nutritional value of and immunological tolerance to two soy-protein concentrates in adult humans. American Journal of Clinical Nutrition 50, 9071007.
Bodwell, C. E., Satterlee, L. D. & Hackler, L. R. (1980). Protein digestibility of the same protein preparations by humans and rat assays and by in vitro enzymic digestion methods. Journal of Nutrition 30, 269283.
Brener, W., Hendrix, T. R. & McHugh, P. R. (1983). Regulation of the gastric emptying of glucose. Gastroenterology 85, 7682.
Bressani, R. & Elias, L. G. (1977). The problem of legume protein digestibility. In Nutritional Standards and Methods of Evaluation for Food Legume Breeders, pp. 6172 [Billingsley, L. W., editor]. Ottawa: International Development Research Center.
Cheng, Y. J., Thompson, L. D. & Brittin, H. C. (1990). Sogurt, a yogurt-like soybean product: development and properties. Journal of Food Science 55, 11781179.
Elashoff, J. D., Reedy, T. J. & Meyer, J. H. (1982). Analysis of gastric emptying data. Gastroenterology 83, 13061312.
Emonts, P., Vidon, N., Bernier, J. J. & Rambaud, J. C. (1979). Etude sur 24 heures des flux liquidiens intestinaux chez I'homme normal par la technique de la perfusion lente d'un marqueur non absorbable. (24-hour intestinal water and electrolyte flow rates in normal man: assessment by the slow marker perfusion technique.) Gastroentirologie Clinique et Biologique 3, 139146.
Erdman, J. W. & Fordyce, E. J. (1989). Soy products and the human diet. American Journal of Clinical Nutrition 49, 725737.
Fordtran, J. S. (1966). Marker perfusion techniques for measuring intestinal absorption in man. Gastroenterology 51, 10891093.
Fordtran, J. S. & Locklear, T. W. (1966). Ionic constituents and osmolality of gastric and small-intestinal fluids after eating. American Journal of Digestive Diseases 11, 503521.
Grant, G. (1989). Anti-nutritional effects of soyabean: A review. Progress in Food and Nutrition Science 13, 317348.
Gorimar, T. S., Hernandez, H. A. & Polczynski, M. W. (1984). Rapid protein determination using pyrochemi-luminescence. American Clinical Products Review November, 4649.
Guilloteau, P., Sauvant, D. & Patureau-Mirand, P. (1983). Methods of comparing amino acid composition of proteins: application to undigested proteins in the prenuminant calf. Annals of Nutrition and Metabolism 27, 457469.
Houghton, L. A., Mangnall, Y. F. & Read, N. W. (1990). Effect of incorporating fat into a liquid test meal on the relation between intragastric distribution and gastric emptying in human volunteers. Gut 31, 12261229.
Hunt, J. N. & McDonald, I. (1954). The influence of volume on gastric emptying. Journal of Physiology 126, 459474.
Hyden, S. (1955). A turbidimetric method for the determination of higher polyethylene glycols in biological materials. Annals of the Royal Agriculture College of Sweden 21, 139145.
Liener, I. E. (1981). Factors affecting the nutritional quality of soya products. Journal of the American Oil Chemists' Society 58, 406415.
Liener, I. E., Goodale, R. L., Deshmukh, A., Satterberg, T. L., Ward, G., DiPietro, C. M., Bankey, P. E. & Borner, J. W. (1988). Effect of a trypsin inhibitor from soybeans (Bowman-Birk) on the secretory activity of the human pancreas. Gastroenterology 94, 419427.
Mahe´, S., Huneau, J. F., Marteau, P., Thuillier, F. & Tome´, D. (1992). Gastro-ileal and electrolyte movements after bovine milk ingestion in humans. American Journal of Clinical Nutrition 56, 410416.
Mahe´, S., Roos, N., Benamouzig, R., Sick, H., Baglieri, A., Huneau, J. F. & Tome´, D. (1994). True exogenous and endogenous nitrogen fractions in the human jejunum after 15N-labeled casein ingestion in low amounts. Journal of Nutrition 124, 548555.
Malagelada, J. R., Longstreth, G. F., Summerskill, W. H. J. & Go, V. L. W. (1976). Measurement of gastric functions during digestion of ordinary solid meals in man. Gastroenterology 70, 203210.
Moberg, S. & Calberger, G. (1974). The effect of gastric emptying of test meals with various fat and osmolar concentrations. Scandinavian Journal of Gastroenterology 9, 2932.
Modigliani, R., Rambaud, J. C. & Bernier, J. J. (1973). The method of intraluminal perfusion of the human small intestine. 1. Principle and technique. Digestion 9, 176192.
Rackis, J. J. & Anderson, R. L. (1964). Isolation of four trypsin inhibitors by DEAE-cellulose chromatography. Biochemical and Biophysical Research Communications 15, 230235.
Rackis, J. J. & Gumbmann, M. R. (1981). Protease inhibitors: physiological properties and nutritional significance. In Antinutrients and Natural Toxicants in Foods, pp. 203237 [Ory, R. L., editor]. Westport, CT: Food and Nutrition Press.
Roebuck, B. D. (1987). Trypsin inhibitors: potential concern for humans? Journal of Nutrifion 117, 398400.
Ruskone´, A., Cosnes, J., Vidon, N., Couzigou, P. & Bernier, J. J. (1980). Se´cre´tion et vidange gastrique apre´s differents repas homogeneises chez l' homme. (Gastric emptying and gastric secretion after variable homogenized meals in man.) Gastroenterologie Clinique et Biologique 4, 777785.
SAS Institute Inc. (1990). SAS/STATTMUser's Guide, Release 6.03. Cary, NC: SAS Institute Inc.
Taylor, S. L., Lemanske, R. F., Bush, R. K. & Busse, W. W. (1987). Chemistry of food allergens. In Food Allergy [Chandra, R. K., editor]. St John's, Newfoundland: Nutrition Research Education Foundation.
Temler, R. S., Dormond, C. A., Simon, E., Morel, B. & Mettraux, C. (1984). Response of rat pancreatic proteases to dietary proteins, their hydrolysates and soybean trypsin inhibitor. Journal of Nutrition 114, 270278.
Torun, B., Viteri, F. E. & Young, V. R. (1981). Nutritional role of soya protein for humans. Journal of the American Oil Chemists' Society 58, 400405.
Vidon, N., Muschart, J. M., Cosnes, J., Ruskone, A. & Bernier, J. J. (1979). Etude critique de l'estimation de la vidange gastrique par la methode de perfusion duodenale d'une substance non absorbable a faible debit. (A critical study of gastric emptying by the dilution of a non-absorbable substance perfused in the duodenum at a slow flow rate.) Gastroenterologie Clinique et Biologique 3, 549552.
Wang, M. F., Kishi, K., Takahashi, T., Komatsu, T., Ohnaka, M. & Inoue, G. (1983). Efficiency of utilization of soy protein isolate in Japanese young men. Journal of Nutritional Science and Vitaminology 29, 201216.
Wayler, A., Queiror, E., Scrimshaw, N. S., Steinke, F. H., Rand, W. M. & Young V. R. (1983). Nitrogen balance studies in young men to assess the protein quality of an isolated soy protein in relation to meat proteins. Journal of Nutrition 113, 23852391.
Wolf, W. J. (1981). Progress and future needs for research in soya protein utilization and nutrition. Journal of the American Oil Chemists' Society 58, 467473.
Young, V. R., Scrimshaw, N. S., Torun, B. & Viteri, F. (1979). Soybean protein in human nutrition: an overview. Journal of the American Oil Chemists' Society 56, 110120.
Young, V. R., Wayler, A., Garza, C., Steinke, F. H., Murray, E., Rand, W. M. & Scrimshaw, N. S. (1984). A long term metabolic balance study in young men to assess the nutritional quality of an isolated soy protein and beef proteins. American Journal of Clinical Nutrition 39, 815.

Keywords

Gastro-jejunal digestion of soya-bean-milk protein in humans

  • Agnes Baglieri (a1), Sylvain Mahe (a1), Semia Zidi (a2), Jean-Francois Huneau (a1), Francois Thuillier (a2), Philippe Marteau (a2) and Daniel Tome (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed