Skip to main content Accessibility help
×
×
Home

Folate and vitamin B12 concentrations are associated with plasma DHA and EPA fatty acids in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study

  • I. Iglesia (a1) (a2), I. Huybrechts (a3) (a4), M. González-Gross (a5) (a6), T. Mouratidou (a1), J. Santabárbara (a7), V. Chajès (a4), E. M. González-Gil (a1) (a6), J. Y. Park (a4), S. Bel-Serrat (a1), M. Cuenca-García (a8) (a9), M. Castillo (a8), M. Kersting (a10), K. Widhalm (a11), S. De Henauw (a3), M. Sjöström (a12) (a13) (a14), F. Gottrand (a15), D. Molnár (a16), Y. Manios (a17), A. Kafatos (a18), M. Ferrari (a19), P. Stehle (a20), A. Marcos (a21), F. J. Sánchez-Muniz (a22) and L. A. Moreno (a1) (a2) (a6)...

Abstract

This study aimed to examine the association between vitamin B6, folate and vitamin B12 biomarkers and plasma fatty acids in European adolescents. A subsample from the Healthy Lifestyle in Europe by Nutrition in Adolescence study with valid data on B-vitamins and fatty acid blood parameters, and all the other covariates used in the analyses such as BMI, Diet Quality Index, education of the mother and physical activity assessed by a questionnaire, was selected resulting in 674 cases (43 % males). B-vitamin biomarkers were measured by chromatography and immunoassay and fatty acids by enzymatic analyses. Linear mixed models elucidated the association between B-vitamins and fatty acid blood parameters (changes in fatty acid profiles according to change in 10 units of vitamin B biomarkers). DHA, EPA) and n-3 fatty acids showed positive associations with B-vitamin biomarkers, mainly with those corresponding to folate and vitamin B12. Contrarily, negative associations were found with n-6:n-3 ratio, trans-fatty acids and oleic:stearic ratio. With total homocysteine (tHcy), all the associations found with these parameters were opposite (for instance, an increase of 10 nmol/l in red blood cell folate or holotranscobalamin in females produces an increase of 15·85 µmol/l of EPA (P value <0·01), whereas an increase of 10 nmol/l of tHcy in males produces a decrease of 2·06 µmol/l of DHA (P value <0·05). Positive associations between B-vitamins and specific fatty acids might suggest underlying mechanisms between B-vitamins and CVD and it is worth the attention of public health policies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Folate and vitamin B12 concentrations are associated with plasma DHA and EPA fatty acids in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Folate and vitamin B12 concentrations are associated with plasma DHA and EPA fatty acids in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Folate and vitamin B12 concentrations are associated with plasma DHA and EPA fatty acids in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: I. Iglesia, email iglesia@unizar.es

Footnotes

Hide All

See online Supplementary material for the HELENA study group members.

Footnotes

References

Hide All
1. Caleyachetty, R, Echouffo-Tcheugui, JB, Tait, CA, et al. (2015) Prevalence of behavioural risk factors for cardiovascular disease in adolescents in low-income and middle-income countries: an individual participant data meta-analysis. Lancet Diabetes Endocrinol 3, 535544.
2. Brambilla, P, Lissau, I, Flodmark, CE, et al. (2007) Metabolic risk-factor clustering estimation in children: to draw a line across pediatric metabolic syndrome. Int J Obes (Lond) 31, 591600.
3. Garaiova, I, Muchova, J, Nagyova, Z, et al. (2013) Effect of a plant sterol, fish oil and B vitamin combination on cardiovascular risk factors in hypercholesterolemic children and adolescents: a pilot study. Nutr J 12, 7.
4. Berenson, GS, Srinivasan, SR, Bao, W, et al. (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 338, 16501656.
5. Peng, HY, Man, CF, Xu, J, et al. (2015) Elevated homocysteine levels and risk of cardiovascular and all-cause mortality: a meta-analysis of prospective studies. J Zhejiang Univ Sci B 16, 7886.
6. Lonn, E, Yusuf, S, Arnold, MJ, et al. (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354, 15671577.
7. Wald, DS, Law, M & Morris, JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325, 1202.
8. Veeranna, V, Zalawadiya, SK, Niraj, A, et al. (2011) Homocysteine and reclassification of cardiovascular disease risk. J Am Coll Cardiol 58, 10251033.
9. Lewis, SJ, Ebrahim, S & Davey Smith, G (2005) Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? BMJ 331, 1053.
10. Marti-Carvajal, AJ, Sola, I & Lathyris, D (2015) Homocysteine-lowering interventions for preventing cardiovascular events. The Cochrane Database of Systematic Reviews, issue 1, CD006612.
11. Rodionov, RN & Lentz, SR (2008) The homocysteine paradox. Arterioscler Thromb Vasc Biol 28, 10311033.
12. Hooper, L, Thompson, RL, Harrison, RA, et al. (2006) Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 332, 752760.
13. Durand, P, Prost, M & Blache, D (1996) Pro-thrombotic effects of a folic acid deficient diet in rat platelets and macrophages related to elevated homocysteine and decreased n-3 polyunsaturated fatty acids. Atherosclerosis 121, 231243.
14. Tsuge, H, Hotta, N & Hayakawa, T (2000) Effects of vitamin B-6 on (n-3) polyunsaturated fatty acid metabolism. J Nutr 130, 333S334S.
15. van Wijk, N, Watkins, CJ, Hageman, RJ, et al. (2012) Combined dietary folate, vitamin B-12, and vitamin B-6 intake influences plasma docosahexaenoic acid concentration in rats. Nutr Metab (Lond) 9, 49.
16. Crowe, FL, Skeaff, CM, McMahon, JA, et al. (2008) Lowering plasma homocysteine concentrations of older men and women with folate, vitamin B-12, and vitamin B-6 does not affect the proportion of (n-3) long chain polyunsaturated fatty acids in plasma phosphatidylcholine. J Nutr 138, 551555.
17. Li, D, Mann, NJ & Sinclair, AJ (2006) A significant inverse relationship between concentrations of plasma homocysteine and phospholipid docosahexaenoic acid in healthy male subjects. Lipids 41, 8589.
18. Zhao, M, Lamers, Y, Ralat, MA, et al. (2012) Marginal vitamin B-6 deficiency decreases plasma (n-3) and (n-6) PUFA concentrations in healthy men and women. J Nutr 142, 17911797.
19. Moreno, LA, De Henauw, S, Gonzalez-Gross, M, et al. (2008) Design and implementation of the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Int J Obes (Lond) 32, Suppl. 5, S4S11.
20. Beghin, L, Huybrechts, I, Vicente-Rodriguez, G, et al. (2012) Mains characteristics and participation rate of European adolescents included in the HELENA study. Arch Public Health 70, 14.
21. Beghin, L, Castera, M, Manios, Y, et al. (2008) Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA Cross-Sectional Study. Int J Obes (Lond) 32, Suppl. 5, S12S18.
22. Gonzalez-Gross, M, Benser, J, Breidenassel, C, et al. (2012) Gender and age influence blood folate, vitamin B(12), vitamin B(6), and homocysteine levels in European adolescents: the Helena Study. Nutr Res 32, 817826.
23. Gonzalez-Gross, M, Breidenassel, C, Gomez-Martinez, S, et al. (2008) Sampling and processing of fresh blood samples within a European multicenter nutritional study: evaluation of biomarker stability during transport and storage. Int J Obes (Lond) 32, Suppl. 5, S66S75.
24. Dumont, J, Huybrechts, I, Spinneker, A, et al. (2011) FADS1 genetic variability interacts with dietary alpha-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J Nutr 141, 12471253.
25. Vereecken, CA, Covents, M, Sichert-Hellert, W, et al. (2008) Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. Int J Obes (Lond) 32, Suppl. 5, S26S34.
26. Ireland, J, van Erp-Baart, AM, Charrondiere, UR, et al. (2002) Selection of a food classification system and a food composition database for future food consumption surveys. Eur J Clin Nutr 56, Suppl. 2, S33S45.
27. Huybrechts, I, Vereecken, C, De Bacquer, D, et al. (2010) Reproducibility and validity of a diet quality index for children assessed using a FFQ. Br J Nutr 104, 135144.
28. Vyncke, K, Cruz Fernandez, E, Fajo-Pascual, M, et al. (2012) Validation of the Diet Quality Index for Adolescents by comparison with biomarkers, nutrient and food intakes: the HELENA study. Br J Nutr 109, 20672078.
29. Nagy, E, Vicente-Rodriguez, G, Manios, Y, et al. (2008) Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int J Obes (Lond) 32, Suppl. 5, S58S65.
30. Neveus, T, Eggert, P, Evans, J, et al. (2010) Evaluation of and treatment for monosymptomatic enuresis: a standardization document from the International Children’s Continence Society. J Urol 183, 441447.
31. Cole, TJ, Freeman, JV & Preece, MA (1995) Body mass index reference curves for the UK, 1990. Arch Dis Child 73, 2529.
32. Iliescu, C, Beghin, L, Maes, L, et al. (2008) Socioeconomic questionnaire and clinical assessment in the HELENA Cross-Sectional Study: methodology. Int J Obes (Lond) 32, Suppl. 5, S19S25.
33. Hagstromer, M, Bergman, P, De Bourdeaudhuij, I, et al. (2008) Concurrent validity of a modified version of the International Physical Activity Questionnaire (IPAQ-A) in European adolescents: the HELENA Study. Int J Obes (Lond) 32, Suppl. 5, S42S48.
34. IPAQ Research Committee (2005) Guidelines for the Data Processing and Analysis of the International Physical Activity Questionnaire. http://www.ipaq.ki.se/scoring.pdf (accessed May 2016).
35. Haerens, L, Deforche, B, Maes, L, et al. (2007) Physical activity and endurance in normal weight versus overweight boys and girls. J Sports Med Phys Fitness 47, 344350.
36. McDonald, JH (2008) Handbook of Biological Statistics. Baltimore, MD: University of Delaware.
37. Benjamini, Y & Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57, 289300.
38. Cabrini, L, Bochicchio, D, Bordoni, A, et al. (2005) Correlation between dietary polyunsaturated fatty acids and plasma homocysteine concentration in vitamin B6-deficient rats. Nutr Metab Cardiovasc Dis 15, 9499.
39. Bertrandt, J, Klos, A & Debski, B (2005) Polyunsaturated fatty acid (PUFA) changes in serum and liver of undernourished rats given dietary vitamin B6 supplementation. J Nutr Sci Vitaminol (Tokyo) 51, 129134.
40. Dullemeijer, C, Durga, J, Brouwer, IA, et al. (2007) Erythrocyte folate and plasma DHA in the FACIT study. Lancet 370, 216.
41. de la Rocha, C, Pérez-Mojica, JE, León, SZ-D, et al. (2016) Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci Rep 6, 25867.
42. Vyncke, K, Huybrechts, I, Van Winckel, M, et al. (2014) Dietary lipid intake only partially influences variance in serum phospholipid fatty acid composition in adolescents: impact of other dietary factors. Lipids 49, 881893.
43. Willett, WC (1998) Nutritional Epidemiology, 2nd ed. New York: Oxford University Press.
44. Vyncke, KE, Libuda, L, De Vriendt, T, et al. (2012) Dietary fatty acid intake, its food sources and determinants in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Br J Nutr 108, 22612273.
45. Iglesia, I, Mouratidou, T, González-Gross, M, et al. (2016) Foods contributing to vitamin B6, folate, and vitamin B12 intakes and biomarkers status in European adolescents: The HELENA study. Eur J Nutr (epublication ahead of print version 25 May 2016).
46. Kulkarni, A, Dangat, K, Kale, A, et al. (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS ONE 6, e17706.
47. Watson, RR & De Meester, F (2014) Omega-3 Fatty Acids in Brain and Neurological Health. London: Elsevier Science.
48. Zhao, M, Ralat, MA, da Silva, V, et al. (2013) Vitamin B-6 restriction impairs fatty acid synthesis in cultured human hepatoma (HepG2) cells. Am J Physiol Endocrinol Metab 304, E342E351.
49. Audet, A & Lupien, PJ (1974) Triglyceride metabolism in pyridoxine-deficient rats. J Nutr 104, 91100.
50. Sabo, DJ, Francesconi, RP & Gershoff, SN (1971) Effect of vitamin B6 deficiency on tissue dehydrogenases and fat synthesis in rats. J Nutr 101, 2934.
51. Cho, YO & Leklem, JE (1990) In vivo evidence for a vitamin B-6 requirement in carnitine synthesis. J Nutr 120, 258265.
52. Sakakeeny, L, Roubenoff, R, Obin, M, et al. (2012) Plasma pyridoxal-5-phosphate is inversely associated with systemic markers of inflammation in a population of U.S. adults. J Nutr 142, 12801285.
53. Moratidou, T, Saborido, CM, Wollgast, J, et al. (2013) Trans Fatty Acids in Diets: Health and Legislative Implications. Ispra: Joint Research Centre.
54. Martin-Saborido, C, Mouratidou, T, Livaniou, A, et al. (2016) Public health economic evaluation of different European Union-level policy options aimed at reducing population dietary trans fat intake. Am J Clin Nutr 104, 12181226.
55. Hernández Rodríguez, M & Gallego, AS (1999) Tratado de Nutrición (Nutrition Treaty). Madrid: Díaz de Santos.
56. Caron-Jobin, M, Mauvoisin, D, Michaud, A, et al. (2012) Stearic acid content of abdominal adipose tissues in obese women. Nutr Diabetes 2, e23.
57. Mosconi, C, Agradi, E, Gambetta, A, et al. (1989) Decrease of polyunsaturated fatty acids and elevation of the oleic/stearic acid ratio in plasma and red blood cell lipids of malnourished cancer patients. JPEN J Parenter Enteral Nutr 13, 501504.
58. Poloni, S, Blom, HJ & Schwartz, IV (2015) Stearoyl-CoA desaturase-1: is it the link between sulfur amino acids and lipid metabolism? Biology (Basel) 4, 383396.
59. Hodson, L & Fielding, BA (2013) Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res 52, 1542.
60. Tanner, JM & Whitehouse, RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51, 170179.
61. Vyncke, KE, Huybrechts, I, Dallongeville, J, et al. (2013) Intake and serum profile of fatty acids are weakly correlated with global dietary quality in European adolescents. Nutrition 29, 411419; e411–413.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Iglesia supplementary material
Iglesia supplementary material 1

 Word (22 KB)
22 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed