Skip to main content Accessibility help
×
×
Home

Fish oil supplementation from 9 to 18 months of age affects the insulin-like growth factor axis in a sex-specific manner in Danish infants

  • Camilla T. Damsgaard (a1), Laurine B. S. Harsløf (a1), Anders D. Andersen (a2), Lars I. Hellgren (a3), Kim F. Michaelsen (a1) and Lotte Lauritzen (a1)...

Abstract

Several studies have investigated the effects of fish oil (FO) on infant growth, but little is known about the effects of FO and sex on insulin-like growth factor-1 (IGF-1), the main regulator of growth in childhood. We explored whether FO v. sunflower oil (SO) supplementation from 9 to 18 months of age affected IGF-1 and its binding protein-3 (IGFBP-3) and whether the potential effects were sex specific. Danish infants (n 115) were randomly allocated to 5 ml/d FO (1·2 g/d n-3 long-chain PUFA (n-3 LCPUFA)) or SO. We measured growth, IGF-1, IGFBP-3 and erythrocyte EPA, a biomarker of n-3 LCPUFA intake and status, at 9 and 18 months. Erythrocyte EPA increased strongly with FO compared with SO (P<0·001). There were no effects of FO compared with SO on IGF-1 in the total population, but a sex×group interaction (P=0·02). Baseline-adjusted IGF-1 at 18 months was 11·1 µg/l (95 % CI 0·4, 21·8; P=0·04) higher after FO compared with SO supplementation among boys only. The sex×group interaction was borderline significant in the model of IGFBP-3 (P=0·09), with lower IGFBP-3 with FO compared with SO among girls only (P=0·03). The results were supported by sex-specific dose–response associations between changes in erythrocyte EPA and changes in IGF-1 and IGFBP-3 (both P<0·03). Moreover, IGF-1 was sex specifically associated with BMI and length. In conclusion, FO compared with SO resulted in higher IGF-1 among boys and lower IGFBP-3 among girls. The potential long-term implications for growth and body composition should be investigated further.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fish oil supplementation from 9 to 18 months of age affects the insulin-like growth factor axis in a sex-specific manner in Danish infants
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fish oil supplementation from 9 to 18 months of age affects the insulin-like growth factor axis in a sex-specific manner in Danish infants
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fish oil supplementation from 9 to 18 months of age affects the insulin-like growth factor axis in a sex-specific manner in Danish infants
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: C. T. Damsgaard, email ctd@nexs.ku.dk

References

Hide All
1. Mohan, S & Kesavan, C (2012) Role of insulin-like growth factor-1 in the regulation of skeletal growth. Curr Osteoporos Rep 10, 178186.
2. Hill, DJ & Hogg, J (1989) Growth factors and the regulation of pre- and postnatal growth. Baillieres Clin Endocrinol Metab 3, 579625.
3. Juul, A, Dalgaard, P, Blum, WF, et al. (1995) Serum levels of insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) in healthy infants, children, and adolescents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J Clin Endocrinol Metab 80, 25342542.
4. Juul, A (2003) Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res 13, 113170.
5. Gatford, KL, Egan, AR, Clarke, IJ, et al. (1998) Sexual dimorphism of the somatotrophic axis. J Endocrinol 157, 373389.
6. Larnkjaer, A, Molgaard, C & Michaelsen, KF (2012) Early nutrition impact on the insulin-like growth factor axis and later health consequences. Curr Opin Clin Nutr Metab Care 15, 285292.
7. Shen, CL, Yeh, JK, Rasty, J, et al. (2006) Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats. Br J Nutr 95, 462468.
8. Watkins, BA, Li, Y & Seifert, MF (2006) Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers in ovariectomized rats. J Nutr Biochem 17, 282289.
9. Griel, AE, Kris-Etherton, PM, Hilpert, KF, et al. (2007) An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr J 6, 2.
10. Andersen, AD, Ludvig, SE, Damsgaard, CT, et al. (2013) The effect of fatty acid positioning in dietary triacylglycerols and intake of long-chain n-3 polyunsaturated fatty acids on bone mineral accretion in growing piglets. Prostaglandins Leukot Essent Fatty Acids 89, 235240.
11. Coyne, GS, Kenny, DA & Waters, SM (2011) Effect of dietary n-3 polyunsaturated fatty acid supplementation on bovine uterine endometrial and hepatic gene expression of the insulin-like growth factor system. Theriogenology 75, 500512.
12. Wei, HK, Zhou, Y, Jiang, S, et al. (2013) Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. Br J Nutr 110, 671680.
13. Damsgaard, CT, Molgaard, C, Matthiessen, J, et al. (2012) The effects of n-3 long-chain polyunsaturated fatty acids on bone formation and growth factors in adolescent boys. Pediatr Res 71, 713719.
14. Asserhoj, M, Nehammer, S, Matthiessen, J, et al. (2009) Maternal fish oil supplementation during lactation may adversely affect long-term blood pressure, energy intake, and physical activity of 7-year-old boys. J Nutr 139, 298304.
15. Damsgaard, CT, Eidner, MB, Stark, KD, et al. (2014) Eicosapentaenoic acid and docosahexaenoic acid in whole blood are differentially and sex-specifically associated with cardiometabolic risk markers in 8-11-year-old danish children. PLOS ONE 9, e109368.
16. Fong, L, Muhlhausler, BS, Gibson, RA, et al. (2012) Perinatal maternal dietary supplementation of omega 3-fatty acids transiently affects bone marrow microenvironment, osteoblast and osteoclast formation, and bone mass in male offspring. Endocrinology 153, 24552465.
17. Pedersen, L, Lauritzen, L, Brasholt, M, et al. (2012) Polyunsaturated fatty acid content of mother’s milk is associated with childhood body composition. Pediatr Res 72, 631636.
18. Andersen, AD, Michaelsen, KF, Hellgren, LI, et al. (2011) A randomized controlled intervention with fish oil versus sunflower oil from 9 to 18 months of age: exploring changes in growth and skinfold thicknesses. Pediatr Res 70, 368374.
19. Andersen, AD, Molbak, L, Michaelsen, KF, et al. (2011) Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation. J Pediatr Gastroenterol Nutr 53, 303309.
20. Harslof, LB, Larsen, LH, Ritz, C, et al. (2013) FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants. Am J Clin Nutr 97, 14031410.
21. Harslof, LB, Damsgaard, CT, Hellgren, LI, et al. (2014) Effects on metabolic markers are modified by PPARG2 and COX2 polymorphisms in infants randomized to fish oil. Genes Nutr 9, 396.
22. Harslof, LB, Damsgaard, CT, Andersen, AD, et al. (2014) Reduced ex vivo stimulated IL-6 response in infants randomized to fish oil from 9 to 18 months, especially among PPARG2 and COX2 wild types. Prostaglandins Leukot Essent Fatty Acids 94, 2127.
23. Gondolf, UH, Tetens, I, Hills, AP, et al. (2012) Validation of a pre-coded food record for infants and young children. Eur J Clin Nutr 66, 9196.
24. Lauritzen, L, Jorgensen, MH, Mikkelsen, TB, et al. (2004) Maternal fish oil supplementation in lactation: effect on visual acuity and n-3 fatty acid content of infant erythrocytes. Lipids 39, 195206.
25. Larnkjaer, A, Hoppe, C, Molgaard, C, et al. (2009) The effects of whole milk and infant formula on growth and IGF-I in late infancy. Eur J Clin Nutr 63, 956963.
26. Gholamhosseini, S, Nematipour, E, Djazayery, A, et al. (2015) Omega-3 fatty acid differentially modulated serum levels of IGF1 and IGFBP3 in men with CVD: a randomized, double-blind placebo-controlled study. Nutrition 31, 480484.
27. Collins, CT, Makrides, M, Gibson, RA, et al. (2011) Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial. Br J Nutr 105, 16351643.
28. Makrides, M, Gibson, RA, Udell, T, et al. (2005) Supplementation of infant formula with long-chain polyunsaturated fatty acids does not influence the growth of term infants. Am J Clin Nutr 81, 10941101.
29. Closa-Monasterolo, R, Ferre, N, Luque, V, et al. (2011) Sex differences in the endocrine system in response to protein intake early in life. Am J Clin Nutr 94, 1920S1927S.
30. Makrides, M, Gibson, RA, McPhee, AJ, et al. (2010) Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA 304, 16751683.
31. Socha, P, Grote, V, Gruszfeld, D, et al. (2011) Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr 94, 1776S1784S.
32. Andersson, AM, Toppari, J, Haavisto, AM, et al. (1998) Longitudinal reproductive hormone profiles in infants: peak of inhibin B levels in infant boys exceeds levels in adult men. J Clin Endocrinol Metab 83, 675681.
33. Juul, A (2001) The effects of oestrogens on linear bone growth. Hum Reprod Update 7, 303313.
34. Margalit, O, Wang, D & Dubois, RN (2012) PPARgamma agonists target aromatase via both PGE2 and BRCA1. Cancer Prev Res (Phila) 5, 11691172.
35. Roche, AF & Shumei, SS (2003) Determinants of growth. In Human Growth-Assessment and Interpretation, pp. 111171 [AF Roche and SS Shumei, editors]. Cambridge: Cambridge University Press.
36. Katan, MB, Deslypere, JP, van Birgelen, AP, et al. (1997) Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 38, 20122022.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Damsgaard supplementary material
Figure S1

 Word (93 KB)
93 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed