Skip to main content Accessibility help
×
Home

Feeding sunflower oil to partially defaunate the rumen increases nitrogen retention, urea-nitrogen recycling to the gastrointestinal tract and the anabolic use of recycled urea-nitrogen in growing lambs

  • Kiran Doranalli (a1) and Timothy Mutsvangwa (a1)

Abstract

The objective of the present study was to delineate how interactions between feeding sunflower oil (SFO) to partially defaunate the rumen and altering dietary ruminally fermentable carbohydrate may alter urea-N kinetics and N metabolism in lambs. In a 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments, four Suffolk ram lambs (61·5 (se 4·0) kg) were used. Treatments were 0 ( − SFO) v. 6 % (+SFO) SFO and dry-rolled barley (DRB) v. pelleted barley (PB). N balance was measured over 4 d, with concurrent measurement of urea-N kinetics using continuous intra-jugular infusions of [15N15N]urea. Feeding SFO decreased (P = 0·001) ruminal protozoa and NH3-N concentrations. Urinary N excretion was lower (P = 0·003), and retained N was higher (P = 0·002) in +SFO lambs compared with − SFO lambs. Endogenous production of urea-N (urea-N entry rate; UER) was similar across treatments. Urea-N transfer to the gastrointestinal tract (GIT) (GIT entry rate; GER), expressed as absolute amounts (16·4 v. 13·1 g/d) or as a proportion of the UER (0·693 v. 0·570), its anabolic use (9·0 v. 6·0 g/d) and microbial N supply (14·6 v. 10·9 g/d) were higher (P ≤ 0·001) in +SFO lambs compared with –SFO lambs. As a proportion of the UER, GER was higher, whereas urinary urea-N loss was lower, in lambs fed PB compared with those fed DRB (P = 0·01). In summary, feeding SFO increased urea-N recycling to the GIT and microbial non-NH3-N supply, thus providing new evidence that the improved efficiency of N utilization in partially defaunated ruminants could be partly mediated by an increase in urea-N recycling.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Feeding sunflower oil to partially defaunate the rumen increases nitrogen retention, urea-nitrogen recycling to the gastrointestinal tract and the anabolic use of recycled urea-nitrogen in growing lambs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Feeding sunflower oil to partially defaunate the rumen increases nitrogen retention, urea-nitrogen recycling to the gastrointestinal tract and the anabolic use of recycled urea-nitrogen in growing lambs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Feeding sunflower oil to partially defaunate the rumen increases nitrogen retention, urea-nitrogen recycling to the gastrointestinal tract and the anabolic use of recycled urea-nitrogen in growing lambs
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr T. Mutsvangwa, fax +1 306 966 4151, email tim.mutsvan@usask.ca

References

Hide All
1 Lapierre, H & Lobley, GE (2001) Nitrogen recycling in the ruminant: a review. J Dairy Sci 84, E223E236.
2 Kiran, D & Mutsvangwa, T (2010) Effects of partial ruminal defaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations. J Anim Sci 88, 10341047.
3 Firkins, JL, Yu, Z & Morrison, M (2007) Ruminal nitrogen metabolism: perspectives for integration of microbiology and nutrition for dairy. J Dairy Sci 90, E1E16.
4 Jouany, JP (1996) Effect of rumen protozoa on nitrogen utilization by ruminants. J Nutr 126, 1335S1346S.
5 Kennedy, PM & Milligan, LP (1980) The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Can J Anim Sci 60, 205221.
6 Rémond, D, Meschy, F & Boivin, R (1996) Metabolites, water and mineral exchanges cross the rumen wall: mechanisms and regulation. Ann Zootech 45, 97119.
7 Cheng, KJ & Wallace, RJ (1979) The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flow. Br J Nutr 42, 553557.
8 Marini, JC, Klein, JDM, Sands, JM, et al. (2004) Effect of nitrogen intake on nitrogen recycling and urea transporter abundance in lambs. J Anim Sci 82, 11571164.
9 Wickersham, TA, Titgemeyer, EC, Cochran, RC, et al. (2009) Effect of undegradable intake protein supplementation on urea kinetics and microbial use of recycled urea in steers consuming low-quality forage. Br J Nutr 101, 225232.
10 Huntington, GB (1989) Hepatic urea synthesis and site and rate of urea removal from blood of beef steers fed alfalfa hay or a high concentrate diet. Can J Anim Sci 69, 215223.
11 Theurer, CB, Huntington, GB, Huber, JT, et al. (2002) Net absorption and utilization of nitrogenous compounds across ruminal, intestinal, and hepatic tissues of growing beef steers fed dry-rolled or steam-flaked sorghum grain. J Anim Sci 80, 525532.
12 Russell, JB (1998) Strategies that ruminal bacteria use to handle excess carbohydrate. J Anim Sci 76, 19551963.
13 Koenig, KM, Beauchemin, KA & Rode, LM (2003) Effect of grain processing and silage on microbial protein synthesis and nutrient digestibility in beef cattle fed barley-based diets. J Anim Sci 81, 10571067.
14 Eadie, JM, Hyldgaard-Jensen, J, Mann, SO, et al. (1970) Observation on the microbiology and biochemistry of the rumen in cattle given different quantities of a pelleted barley ration. Br J Nutr 24, 157177.
15 Kiran, D & Mutsvangwa, T (2007) Effects of barley grain processing and dietary ruminally-degradable protein on urea-nitrogen recycling and nitrogen metabolism in growing lambs. J Anim Sci 85, 33913399.
16 Canadian Council on Animal Care (1993) Guide to the Care and Use of Experimental Animals, vol. 1. Ottawa: Canadian Council on Animal Care.
17 Ivan, M, Mir, PS, Koenig, KM, et al. (2001) Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Rumin Res 41, 215227.
18 Ogimoto, K & Imai, S (1981) Atlas of Rumen Microbiology. Tokyo: Japan. Japan Scientific Societies Press.
19 Lobley, GE, Bremner, DM & Zuur, G (2000) Effects of diet quality on urea fates in sheep as assessed by refined, non-invasive [15N 15N] urea kinetics. Br J Nutr 84, 459468.
20 Yu, P, Christensen, DA & McKinnon, JJ (2003) Effect of variety and maturity stage on chemical composition, carbohydrate and protein subfractions, in vitro rumen degradability and energy values of timothy and alfalfa. Can J Anim Sci 83, 279290.
21 Association of Official Analytical Chemists (1995) Association of Official Analytical Chemists, 18th ed. Arlington, VA: Association of Official Analytical Chemists.
22 Van Soest, PJ, Robertson, JB & Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74, 35833597.
23 Soita, HW, Fehr, M, Christensen, DA, et al. (2005) Effects of corn silage particle length and forage: concentrate ratio on milk fatty acid composition in dairy cows fed supplemental flaxseed. J Dairy Sci 88, 28132819.
24 Erwin, ES, Marco, GJ & Emery, EM (1961) Volatile fatty acids analysis of blood and rumen fluid by gas chromatography. J Dairy Sci 44, 17681771.
25 Broderick, GA & Kang, JH (1980) Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J Dairy Sci 63, 6475.
26 Makkar, HPS & Becker, K (1999) Purine quantification in the digesta from ruminant animals by spectrophotometric and HPLC methods. Br J Nutr 81, 107111.
27 Chen, XB & Gomes, MJ (1992) Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives – An Overview of the Technical Details. Aberdeen: International Feed Resources Unit, Rowett Research Institute. http://www.macaulay.ac.uk/IFRU/pdf/chema.pdf.
28 Marsh, WH, Fingerhunt, B & Kirsch, E (1957) Determination of urea N with the diacetyl method and an automatic dialyzing apparatus. Am J Clin Pathol 28, 681688.
29 Archibeque, SL, Burns, JC & Huntington, GB (2001) Urea flux in beef steers: effects of forage species and nitrogen fertilization. J Anim Sci 79, 19371943.
30 SAS Institute (2004) SAS/STAT 9·1 User's Guide Version. Cary, NC: SAS Institute, Inc.
31 Wang, Z & Goonewardene, LA (2004) The use of MIXED models in the analysis of animal experiments with repeated measures data. Can J Anim Sci 84, 111.
32 Koenig, KM, Newbold, CJ, McIntosh, FM, et al. (2000) Effects of protozoa on bacterial nitrogen recycling in the rumen. J Anim Sci 78, 24312445.
33 Newbold, CJ, Chamberlain, DG & Williams, AG (1986) The effects of defaunation on the metabolism of lactic acid in the rumen. J Sci Food Agric 37, 10831090.
34 Ivan, M, Mir, PS, Mir, Z, et al. (2004) Effects of dietary sunflower seeds on rumen protozoa and growth of lambs. Br J Nutr 92, 303310.
35 Oldick, BS & Firkins, JL (2000) Effects of degree of fat saturation on fiber digestion and microbial protein synthesis when diets are fed twelve times daily. J Anim Sci 78, 24122420.
36 Faichney, GJ, Gordon, GLR, Welch, RJ, et al. (2002) Effect of dietary free lipid on anaerobic fungi and digestion in the rumen of sheep. Aust J Agric Res 53, 519527.
37 Yang, WZ, Beauchemin, KA & Rode, LM (2000) Effects of barley grain processing on extent of digestion and milk production of lactating cows. J Dairy Sci 83, 554568.
38 Schroeder, GF, Titgemeyer, EC, Awawdeh, MS, et al. (2006) Effects of energy source on methionine utilization by growing steers. J Anim Sci 84, 15051511.
39 Chowdhury, SA, Ørskov, ER, De, FD, et al. (1997) Protein utilization during energy undernutrition in sheep sustained by intragastric infusion: effects of protein infusion level, with or without sub-maintenance amounts of energy from volatile fatty acids, on energy and protein metabolism. Br J Nutr 77, 565576.
40 Ørskov, ER, Meehan, DE, MacLeod, NA, et al. (1999) Effects of glucose supply on fasting nitrogen excretion and effect of level and type of volatile fatty acid on response to protein infusion in cattle. Br J Nutr 81, 389393.
41 Raggio, G, Lobley, GE, Lemosquet, S, et al. (2006) Effect of casein and propionate supply on whole body protein metabolism in lactating cows. Can J Anim Sci 86, 8189.
42 Reynolds, CK & Huntington, GB (1988) Partition of portal-drained visceral net flux in beef steers. 1. Blood flow and net flux of oxygen, glucose and nitrogenous compounds across stomach and post-stomach tissues. Br J Nutr 60, 539551.
43 Sunny, NE, Owens, SL, Baldwin, RL, et al. (2007) Salvage of blood urea nitrogen in sheep is highly dependent upon plasma urea concentration and the efficiency of capture within the digestive tract. J Anim Sci 85, 10061013.
44 Wu, Z & Palmquist, DL (1991) Synthesis and biohydrogenation of fatty acids by ruminal microorganisms in vitro. J Dairy Sci 74, 30353046.
45 Firkins, JL, Berger, LL, Merchen, NR, et al. (1987) Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration. J Dairy Sci 70, 23022311.
46 Van Soest, PJ (1994) Function of the ruminant forestomach. In Nutritional Ecology of the Ruminant, 2nd ed., pp. 230252. Ithaca, NY: Cornell University Press.
47 Savary-Auzeloux, IC, Majdoub, L, LeFloc'h, N, et al. (2003) Effects of intraruminal propionate supplementation on nitrogen utilisation by the portal-drained viscera, the liver and the hindlimb in lambs fed frozen rye grass. Br J Nutr 90, 939952.
48 Kim, H-S, Choung, JJ, Dhamberlain, D, et al. (1999) Effect of propionate on ovine urea kinetics. In VIIIth International Symposium on Protein Metabolism and Nutrition, p. 57 [Lobley, G, White, A and MacRae, JC, editors]. Aberdeen: Aberdeen United Kingdom, Wageningen Press.
49 Abdoun, K, Stumpff, F & Martens, H (2007) Ammonia and urea transport across the rumen epithelium: a review. Anim Health Res Rev 7, 4359.
50 Sakata, T & Tamate, H (1978) Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate. J Dairy Sci 61, 11091113.
51 Taniguchi, K, Huntington, GB & Glenn, BP (1995) Net nutrient flux by visceral tissues of beef steers given abomasal and ruminal infusions of casein and starch. J Anim Sci 73, 236249.
52 Theurer, CB, Huber, JT, Delgado-Elorduy, A, et al. (1999) Invited review: summary of steam-flaking corn or sorghum grain for lactating dairy cows. J Dairy Sci 82, 19501959.
53 Gozho, GN, Hobin, MR & Mutsvangwa, T (2008) Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and urea-nitrogen recycling in dairy cows. J Dairy Sci 91, 247259.
54 Abdoun, K, Stumpff, F, Rabbani, I, et al. (2010) Modulation of urea transport across sheep rumen epithelium in vitro by SCFA and CO2. Am J Physiol Gastrointest Liver Physiol 298, G190G202.
55 Russell, JB (2007) The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 13, 111.
56 Russell, JB & Wilson, DB (1996) Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J Dairy Sci 79, 15031509.
57 Stewart, GS, Graham, C, Cattell, SS, et al. (2005) UT-B is expressed in bovine rumen: potential role in ruminal urea transport. Am J Physiol Regul Integr Comp Physiol 289, R605R612.
58 Marini, JC & Van Amburgh, ME (2003) Nitrogen metabolism and recycling in Holstein heifers. J Anim Sci 81, 545552.
59 Simmons, NL, Chaudhry, AS, Graham, C, et al. (2009) Dietary regulation of ruminal bovine UT-B urea transporter expression and localization. J Anim Sci 87, 32883299.
60 National Research Council (1985) Nutrient Requirements of Sheep. Washington, DC: National Academy Press.

Keywords

Feeding sunflower oil to partially defaunate the rumen increases nitrogen retention, urea-nitrogen recycling to the gastrointestinal tract and the anabolic use of recycled urea-nitrogen in growing lambs

  • Kiran Doranalli (a1) and Timothy Mutsvangwa (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed