Skip to main content Accessibility help
×
Home

Feeding a diet devoid of choline to lactating rodents restricts growth and lymphocyte development in offspring

  • E. D. Lewis (a1), S. Goruk (a1), C. Richard (a1), N. S. Dellschaft (a1) (a2), J. M. Curtis (a1), R. L. Jacobs (a1) and C. J. Field (a1)...

Abstract

The nutrient choline is necessary for membrane synthesis and methyl donation, with increased requirements during lactation. The majority of immune development occurs postnatally, but the importance of choline supply for immune development during this critical period is unknown. The objective of this study was to determine the importance of maternal supply of choline during suckling on immune function in their offspring among rodents. At parturition, Sprague–Dawley dams were randomised to either a choline-devoid (ChD; n 7) or choline-sufficient (ChS, 1 g/kg choline; n 10) diet with their offspring euthanised at 3 weeks of age. In a second experiment, offspring were weaned to a ChS diet until 10 weeks of age (ChD-ChS, n 5 and ChS-ChS, n 9). Splenocytes were isolated, and parameters of immune function were measured. The ChD offspring received less choline in breast milk and had lower final body and organ weight compared with ChS offspring (P<0·05), but this effect disappeared by week 10 with choline supplementation from weaning. ChD offspring had a higher proportion of T cells expressing activation markers (CD71 or CD28) and a lower proportion of total B cells (CD45RA+) and responded less to T cell stimulation (lower stimulation index and less IFN-γ production) ex vivo (P<0·05). ChD-ChS offspring had a lower proportion of total and activated CD4+ T cells, and produced less IL-6 after mitogen stimulation compared with cells from ChS-ChS (P<0·05). Our study suggests that choline is required in the suckling diet to facilitate immune development, and choline deprivation during this critical period has lasting effects on T cell function later in life.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Feeding a diet devoid of choline to lactating rodents restricts growth and lymphocyte development in offspring
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Feeding a diet devoid of choline to lactating rodents restricts growth and lymphocyte development in offspring
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Feeding a diet devoid of choline to lactating rodents restricts growth and lymphocyte development in offspring
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr C. Field, fax +1 780 492 2011, email Catherine.Field@ualberta.ca

References

Hide All
1. Zeisel, SH & da Costa, KA (2009) Choline: an essential nutrient for public health. Nutr Rev 67, 615623.
2. Hove, EL & Copeland, DH (1954) Progressive muscular dystrophy in rabbits as a result of chronic choline deficiency. J Nutr 53, 391405.
3. Zeisel, SH (2004) Nutritional importance of choline for brain development. J Am Coll Nutr 23, 621S626S.
4. Lewis, ED, Subhan, FB, Bell, RC, et al. (2014) Estimation of choline intake from 24 h dietary intake recalls and contribution of egg and milk consumption to intake among pregnant and lactating women in Alberta. Br J Nutr 112, 112121.
5. Gossell-Williams, M, Fletcher, H, McFarlane-Anderson, N, et al. (2005) Dietary intake of choline and plasma choline concentrations in pregnant women in Jamaica. West Indian Med J 54, 355359.
6. Molloy, AM, Mills, JL, Cox, C, et al. (2005) Choline and homocysteine interrelations in umbilical cord and maternal plasma at delivery. Am J Clin Nutrn 82, 836842.
7. Ilcol, YO, Ozbek, R, Hamurtekin, E, et al. (2005) Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. J Nutr Biochem 16, 489499.
8. Gwee, MC & Sim, MK (1979) Changes in the concentration of free choline and cephalin-N-methyltransferase activity of the rat material and foetal liver and placeta during gestation and of the maternal and neonatal liver in the early postpartum period. Clin Exp Pharmacol Physiol 6, 259265.
9. Burdge, GC, Hunt, AN & Postle, AD (1994) Mechanisms of hepatic phosphatidylcholine synthesis in adult rat: effects of pregnancy. Biochem J 303, 941947.
10. Zeisel, SH, Mar, MH, Zhou, Z, et al. (1995) Pregnancy and lactation are associated with diminished concentrations of choline and its metabolites in rat liver. J Nutr 125, 30493054.
11. Caudill, MA (2010) Pre- and postnatal health: evidence of increased choline needs. J Am Diet Assoc 110, 11981206.
12. Perez-Cano, FJ, Franch, A, Castellote, C, et al. (2012) The suckling rat as a model for immunonutrition studies in early life. Clin Dev Immunol 2012, 537310.
13. Field, CJ (2005) The immunological components of human milk and their effect on immune development in infants. J Nutr 135, 14.
14. Calder, PC (2007) Immunological parameters: what do they mean? J Nutr 137, 773S780S.
15. Courreges, MC, Benencia, F, Uceda, A, et al. (2003) Effect of dietary choline deficiency on immunocompetence in Wistar rats. Nutr Res 23, 519526.
16. Dellschaft, NS, Ruth, MR, Goruk, S, et al. (2015) Choline is required in the diet of lactating dams to maintain maternal immune function. Br J Nutr 113, 17231731.
17. Newberne, PM, Wilson, RB & Williams, G (1970) Effects of severe and marginal lipotrope deficiency on response of postnatal rats to infection. Br J Exp Pathol 51, 229235.
18. Nauss, KM, Connor, AM, Kavanaugh, A, et al. (1982) Alterations in immune function in rats caused by dietary lipotrope deficiency: effect of age. J Nutr 112, 23332341.
19. Reeves, PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127, 838S841S.
20. Field, CJ, Goruk, S & Glen, S (1999) Effect of diet on the development of the immune system in the BB Rat. J Clinl Biochem Nutr 26, 119134.
21. Zhao, YY, Xiong, Y & Curtis, JM (2011) Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: the determination of choline containing compounds in foods. J Chromatogr A 1218, 54705479.
22. Xiong, Y, Zhao, YY, Goruk, S, et al. (2012) Validation of an LC-MS/MS method for the quantification of choline-related compounds and phospholipids in foods and tissues. J Chromatogr B Analyt Technol Biomed Life Sci 911, 170179.
23. Field, CJ, Wu, G, Metroz-Dayer, MD, et al. (1990) Lactate production is the major metabolic fate of glucose in splenocytes and is altered in spontaneously diabetic BB rats. Biochem J 272, 445452.
24. Field, CJ, Thomson, CA, Van Aerde, JE, et al. (2000) Lower proportion of CD45R0+ cells and deficient interleukin-10 production by formula-fed infants, compared with human-fed, is corrected with supplementation of long-chain polyunsaturated fatty acids. J Pediatr Gastroenterol Nutr 31, 291299.
25. Woollett, GR, Barclay, AN, Puklavec, M, et al. (1985) Molecular and antigenic heterogeneity of the rat leukocyte-common antigen from thymocytes and T and B lymphocytes. Eur J Immunol 15, 168173.
26. Blewett, HJ, Gerdung, CA, Ruth, MR, et al. (2009) Vaccenic acid favourably alters immune function in obese JCR:LA-cp rats. Br J Nutr 102, 526536.
27. Field, CJ, Van Aerde, JE, Robinson, LE, et al. (2008) Effect of providing a formula supplemented with long-chain polyunsaturated fatty acids on immunity in full-term neonates. Br J Nutr 99, 9199.
28. da Silva, RP, Kelly, KB, Lewis, ED, et al. (2015) Choline deficiency impairs intestinal lipid metabolism in the lactating rat. J Nutr Biochem 26, 10771083.
29. Sadrzadeh, SM & Bozorgmehr, J (2004) Haptoglobin phenotypes in health and disorders. Am J Clin Pathol 121, Suppl., S97S104.
30. Newberne, PM, Ahlstrom, A & Rogers, AE (1970) Effects of maternal dietary lipotropes on prenatal and neonatal rats. J Nutr 100, 10891097.
31. Hosea, HJ, Rector, ES & Taylor, CG (2004) Dietary repletion can replenish reduced T cell subset numbers and lymphoid organ weight in zinc-deficient and energy-restricted rats. Br J Nutr 91, 741747.
32. Williams, ML, Shoot, RJ, O’Neal, PL, et al. (1975) Role of dietary iron and fat on vitamin E deficiency anemia of infancy. N Engl J Med 292, 887890.
33. Thompson, CB, Lindsten, T, Ledbetter, JA, et al. (1989) CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci U S A 86, 13331337.
34. Reddy, M, Eirikis, E, Davis, C, et al. (2004) Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunolo Met 293, 127142.
35. McNally, A, Hill, GR, Sparwasser, T, et al. (2011) CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc Natl Acad Sci U S A 108, 75297534.
36. Rudd, CE (2009) CTLA-4 co-receptor impacts on the function of Treg and CD8+ T-cell subsets. Eur J Immunol 39, 687690.
37. Rudd, CE, Taylor, A & Schneider, H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229, 1226.
38. Wing, K, Onishi, Y, Prieto-Martin, P, et al. (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271275.
39. Kotiranta-Ainamo, A, Rautonen, J & Rautonen, N (2004) Imbalanced cytokine secretion in newborns. Biol Neonate 85, 5560.
40. Williams, EA, Gebhardt, BM, Morton, B, et al. (1979) Effects of early marginal methionine-choline deprivation on the development of the immune system in the rat. Am J Clin Nutr 32, 12141223.
41. Hunter, CA, Chizzonite, R & Remington, JS (1995) IL-1 beta is required for IL-12 to induce production of IFN-gamma by NK cells. A role for IL-1 beta in the T cell-independent mechanism of resistance against intracellular pathogens. J Immunol 155, 43474354.
42. Perez-Cano, FJ, Castellote, C, Marin-Gallen, S, et al. (2007) Phenotypic and functional characteristics of rat spleen lymphocytes during suckling. Dev Comp Immunol 31, 12641277.
43. Lotz, M, Jirik, F, Kabouridis, P, et al. (1988) B cell stimulating factor 2/interleukin 6 is a costimulant for human thymocytes and T lymphocytes. J Exp Med 167, 12531258.
44. Okada, M, Kitahara, M, Kishimoto, S, et al. (1988) IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T cells. J Immunol 141, 15431549.
45. Eddahri, F, Denanglaire, S, Bureau, F, et al. (2009) Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities. Blood 113, 24262433.
46. Tian, Y, Pate, C, Andreolotti, A, et al. (2008) Cytokine secretion requires phosphatidylcholine synthesis. J Cell Biol 181, 945957.
47. Noga, AA & Vance, DE (2003) A gender-specific role for phosphatidylethanolamine N-methyltransferase-derived phosphatidylcholine in the regulation of plasma high density and very low density lipoproteins in mice. J Biol Chem 278, 2185121859.
48. Tessitore, L, Sesca, E, Greco, M, et al. (1995) Sexually differentiated response to choline in choline deficiency and ethionine intoxication. Int J Exp Pathol 76, 125129.
49. Saito, R, Palomba, L, Rao, KN, et al. (1991) Resistance of female Fischer-344 rats to the hepatonecrogenic and hepatocarcinogenic actions of a choline-devoid diet. Carcinogenesis 12, 14511457.
50. Holsti, MA & Raulet, DH (1989) IL-6 and IL-1 synergize to stimulate IL-2 production and proliferation of peripheral T cells. J Immunol 143, 25142519.
51. Bernhart, FW & Tomarelli, RM (1966) A salt mixture supplying the national research council estimates of the mineral requirements of the rat. J Nutr 89, 495500.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Lewis supplementary material S1
Supplementary Figure

 Unknown (1.6 MB)
1.6 MB
UNKNOWN
Supplementary materials

Lewis supplementary material S2
Supplementary Figure

 Unknown (1.6 MB)
1.6 MB
UNKNOWN
Supplementary materials

Lewis supplementary material S3
Supplementary Figure

 Unknown (1.6 MB)
1.6 MB
WORD
Supplementary materials

Lewis supplementary material S4
Supplementary Table

 Word (25 KB)
25 KB

Feeding a diet devoid of choline to lactating rodents restricts growth and lymphocyte development in offspring

  • E. D. Lewis (a1), S. Goruk (a1), C. Richard (a1), N. S. Dellschaft (a1) (a2), J. M. Curtis (a1), R. L. Jacobs (a1) and C. J. Field (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed