Skip to main content Accessibility help
×
×
Home

Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice

  • Guan Yang (a1), Yansong Xue (a1), Hanying Zhang (a1), Min Du (a2) and Mei-Jun Zhu (a1) (a3)...

Abstract

The impairment in the rate of cell proliferation and differentiation leads to a negative consequence on the renewal of the intestinal epithelium, which is the aetiological factor of a number of digestive diseases. Grape seed extract (GSE), a rich source of proanthocyanidins, is known for its beneficial health effects. The present study evaluated the beneficial effects of GSE on colonic cell differentiation and barrier function in IL10-deficient mice. Female mice aged 6 weeks were randomised into two groups and given drinking-water containing 0 or 0·1 % GSE (w/v) for 12 weeks. GSE supplementation decreased serum TNF-α level and intestinal permeability, and increased the colonic goblet cell density that was associated with increased mRNA expression of mucin (Muc)-2. Immunohistochemical analyses showed lower accumulation of β-catenin in the crypts of colon tissues of the GSE-supplemented mice, which was associated with a decreased mRNA expression of two downstream effectors of Wingless and Int (Wnt)/catenin signalling, myelocytomatosis oncogene protein (Myc) and cyclin D1 (Ccnd1). Consistently, GSE supplementation decreased the number of colonic proliferating cell nuclear antigen-positive cells, a well-known cell proliferation marker, and a weakened extracellular signal-regulated kinases 1 and 2 (ERK1/2) signalling. In summary, these data indicate that supplementation of 0·1 % GSE for 12 weeks improved gut barrier function and colonic cell differentiation in the IL10-deficient mice probably via inhibiting Wnt/β-catenin pathway.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr M. J. Zhu, fax +1 509 335 4815, email meijun.zhu@wsu.edu

References

Hide All
1 Zeissig, S, Burgel, N, Gunzel, D, et al. (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 56, 6172.
2 Groschwitz, KR & Hogan, SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124, 320.
3 Yu, LC (2009) The epithelial gatekeeper against food allergy. Pediatr Neonatol 50, 247254.
4 Maloy, KJ & Powrie, F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298306.
5 Scaldaferri, F, Pizzoferrato, M, Gerardi, V, et al. (2012) The gut barrier: new acquisitions and therapeutic approaches. J Clin Gastroenterol 46, S12S17.
6 Vaarala, O (2012) Is the origin of type 1 diabetes in the gut? Immunol Cell Biol 90, 271276.
7 van der Flier, LG & Clevers, H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71, 241260.
8 Mak, SK & Kultz, D (2004) Gadd45 proteins induce G2/M arrest and modulate apoptosis in kidney cells exposed to hyperosmotic stress. J Biol Chem 279, 3907539084.
9 Kubben, FJ, Peeters-Haesevoets, A, Engels, LG, et al. (1994) Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 35, 530535.
10 Wang, C, Lisanti, MP & Liao, DJ (2011) Reviewing once more the c-myc and Ras collaboration: converging at the cyclin D1-CDK4 complex and challenging basic concepts of cancer biology. Cell Cycle 10, 5767.
11 Xue, M, Wang, Q, Zhao, J, et al. (2014) Docosahexaenoic acid inhibited the Wnt/β-catenin pathway and suppressed breast cancer cells in vitro and in vivo . J Nutr Biochem 25, 104110.
12 Claessen, MM, Schipper, ME, Oldenburg, B, et al. (2010) WNT-pathway activation in IBD-associated colorectal carcinogenesis: potential biomarkers for colonic surveillance. Cell Oncol 32, 303310.
13 Serafino, A, Moroni, N, Zonfrillo, M, et al. (2014) WNT-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. Oncotarget 5, 978992.
14 Wong, NA, Mayer, NJ, Anderson, CE, et al. (2003) Cyclin D1 and p21 in ulcerative colitis-related inflammation and epithelial neoplasia: a study of aberrant expression and underlying mechanisms. Hum Pathol 34, 580588.
15 Bos, CL, Diks, SH, Hardwick, JC, et al. (2006) Protein phosphatase 2A is required for mesalazine-dependent inhibition of Wnt/β-catenin pathway activity. Carcinogenesis 27, 23712382.
16 Wang, D, Wise, ML, Li, F, et al. (2012) Phytochemicals attenuating aberrant activation of β-catenin in cancer cells. PLOS ONE 7, e50508.
17 Taira, J, Uehara, M, Tsuchida, E, et al. (2014) Inhibition of the β-catenin/Tcf signaling by caffeoylquinic acids in sweet potato leaf through down regulation of the Tcf-4 transcription. J Agric Food Chem 62, 167172.
18 Terra, X, Montagut, G, Bustos, M, et al. (2009) Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20, 210218.
19 Vislocky, LM & Fernandez, ML (2010) Biomedical effects of grape products. Nutr Rev 68, 656670.
20 Hogan, S, Canning, C, Sun, S, et al. (2011) Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet. J Agric Food Chem 59, 30353041.
21 Ohyama, K, Furuta, C, Nogusa, Y, et al. (2011) Catechin-rich grape seed extract supplementation attenuates diet-induced obesity in C57BL/6J mice. Ann Nutr Metab 58, 250258.
22 Wang, YH, Ge, B, Yang, XL, et al. (2011) Proanthocyanidins from grape seeds modulates the nuclear factor-kappa B signal transduction pathways in rats with TNBS-induced recurrent ulcerative colitis. Int Immunopharmacol 11, 16201627.
23 Cheah, KY, Bastian, SE, Acott, TM, et al. (2013) Grape seed extract reduces the severity of selected disease markers in the proximal colon of dextran sulphate sodium-induced colitis in rats. Dig Dis Sci 58, 970977.
24 Oz, HS, Chen, T & de Villiers, WJ (2013) Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models. Front Immunol 4, 132.
25 Wang, B, Yang, G, Liang, X, et al. (2014) Grape seed extract prevents skeletal muscle wasting in interleukin 10 knockout mice. BMC Complement Altern Med 14, 162.
26 Yang, G, Wang, H, Kang, Y, et al. (2014) Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice. Food Funct 5, 25582563.
27 Wang, H, Xue, Y, Zhang, H, et al. (2013) Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL10-deficient mice. Mol Nutr Food Res 57, 22532257.
28 Velmurugan, B, Singh, RP, Kaul, N, et al. (2010) Dietary feeding of grape seed extract prevents intestinal tumorigenesis in APCmin/+ mice. Neoplasia 12, 95102.
29 Goodrich, KM, Fundaro, G, Griffin, LE, et al. (2012) Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats. Nutr Res 32, 787794.
30 Kuhn, R, Lohler, J, Rennick, D, et al. (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263274.
31 Zhou, P, Streutker, C, Borojevic, R, et al. (2004) IL-10 modulates intestinal damage and epithelial cell apoptosis in T cell-mediated enteropathy. Am J Physiol Gastrointest Liver Physiol 287, G599G604.
32 Haub, S, Ritze, Y, Bergheim, I, et al. (2010) Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter. Neurogastroenterol Motil 22, 826834, e229.
33 Reagan-Shaw, S, Nihal, M & Ahmad, N (2008) Dose translation from animal to human studies revisited. FASEB J 22, 659661.
34 Rifler, JP, Lorcerie, F, Durand, P, et al. (2012) A moderate red wine intake improves blood lipid parameters and erythrocytes membrane fluidity in post myocardial infarct patients. Mol Nutr Food Res 56, 345351.
35 Cani, PD, Bibiloni, R, Knauf, C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 14701481.
36 Chrzczanowicz, J, Gawron, A, Zwolinska, A, et al. (2008) Simple method for determining human serum 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity – possible application in clinical studies on dietary antioxidants. Clin Chem Lab Med 46, 342349.
37 Magalhaes, LM, Barreiros, L, Maia, MA, et al. (2012) Rapid assessment of endpoint antioxidant capacity of red wines through microchemical methods using a kinetic matching approach. Talanta 97, 473483.
38 Burich, A, Hershberg, R, Waggie, K, et al. (2001) Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice. Am J Physiol Gastrointest Liver Physiol 281, G764G778.
39 Pellegrinet, L, Rodilla, V, Liu, Z, et al. (2011) Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140, 12301240, e1–e7.
40 Zhu, MJ, Du, M, Hess, BW, et al. (2007) Periconceptional nutrient restriction in the ewe alters MAPK/ERK1/2 and PI3K/Akt growth signaling pathways and vascularity in the placentome. Placenta 28, 11921199.
41 Li, XL, Cai, YQ, Qin, H, et al. (2008) Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Can J Physiol Pharmacol 86, 841849.
42 Wang, YH, Yang, XL, Wang, L, et al. (2010) Effects of proanthocyanidins from grape seed on treatment of recurrent ulcerative colitis in rats. Can J Physiol Pharmacol 88, 888898.
43 Babyatsky, MW, Rossiter, G & Podolsky, DK (1996) Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 110, 975984.
44 Geier, MS, Smith, CL, Butler, RN, et al. (2009) Small-intestinal manifestations of dextran sulfate sodium consumption in rats and assessment of the effects of Lactobacillus fermentum BR11. Dig Dis Sci 54, 12221228.
45 Velmurugan, B, Singh, RP, Agarwal, R, et al. (2010) Dietary-feeding of grape seed extract prevents azoxymethane-induced colonic aberrant crypt foci formation in fischer 344 rats. Mol Carcinog 49, 641652.
46 Zhang, N, Ahsan, MH, Zhu, L, et al. (2005) NF-kappaB and not the MAPK signaling pathway regulates GADD45beta expression during acute inflammation. J Biol Chem 280, 2140021408.
47 Crosnier, C, Stamataki, D & Lewis, J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7, 349359.
48 Johansson, ME & Hansson, GC (2013) Mucus and the goblet cell. Dig Dis 31, 305309.
49 Jadert, C, Phillipson, M, Holm, L, et al. (2014) Preventive and therapeutic effects of nitrite supplementation in experimental inflammatory bowel disease. Redox Biol 2, 7381.
50 Logan, CY & Nusse, R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781810.
51 Bertrand, FE, Angus, CW, Partis, WJ, et al. (2012) Developmental pathways in colon cancer: crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle 11, 43444351.
52 Ding, Q, Xia, W, Liu, JC, et al. (2005) Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19, 159170.
53 Dashwood, WM, Orner, GA & Dashwood, RH (2002) Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H(2)O(2) at physiologically relevant EGCG concentrations. Biochem Biophys Res Commun 296, 584588.
54 Patel, R, Ingle, A & Maru, GB (2008) Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/beta-catenin pathway. Toxicol Appl Pharmacol 227, 136146.
55 Hao, X, Sun, Y, Yang, CS, et al. (2007) Inhibition of intestinal tumorigenesis in Apc(min/+) mice by green tea polyphenols (polyphenon E) and individual catechins. Nutr Cancer 59, 6269.
56 Singh, T & Katiyar, SK (2013) Green tea polyphenol, ( − )-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting beta-catenin signaling. Toxicol Appl Pharmacol 273, 418424.
57 Zhao, J, Yue, W, Zhu, MJ, et al. (2010) AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun 395, 146151.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed