Skip to main content Accessibility help
×
Home

Evaluation of food and nutrient intake assessment using concentration biomarkers in European adolescents from the Healthy Lifestyle in Europe by Nutrition in Adolescence study

  • S. Vandevijvere (a1), A. Geelen (a2), M. Gonzalez-Gross (a3) (a4), P. van't Veer (a2), J. Dallongeville (a5), T. Mouratidou (a6), A. Dekkers (a7), C. Börnhorst (a8), C. Breidenassel (a3) (a4), S. P. Crispim (a9), L. A. Moreno (a6), M. Cuenca-García (a10), K. Vyncke (a11), L. Beghin (a12), E. Grammatikaki (a13), S. De Henauw (a11), G. Catasta (a14), L. Hallström (a15) (a16), M. Sjöström (a15), J. Wärnberg (a15), L. Esperanza (a17), N. Slimani (a9), Y. Manios (a13), D. Molnár (a18), C. C. Gilbert (a15), A. Kafatos (a15), P. Stehle (a3) and I. Huybrechts (a9) (a11)...

Abstract

Accurate food and nutrient intake assessment is essential for investigating diet–disease relationships. In the present study, food and nutrient intake assessment among European adolescents using 24 h recalls (mean of two recalls) and a FFQ (separately and the combination of both) were evaluated using concentration biomarkers. Biomarkers included were vitamin C, β-carotene, DHA+EPA, vitamin B12 (cobalamin and holo-transcobalamin) and folate (erythrocyte folate and plasma folate). For the evaluation of the food intake assessment 390 adolescents were included, while 697 were included for the nutrient intake assessment evaluation. Spearman rank and Pearson correlations, and validity coefficients, which are correlations between intake estimated and habitual true intake, were calculated. Correlations were higher between frequency of food consumption (from the FFQ) and concentration biomarkers than between mean food intake (from the recalls) and concentration biomarkers, especially for DHA+EPA (r 0·35 v. r 0·27). Most correlations were higher among girls than boys. For boys, the highest validity coefficients were found for frequency of fruit consumption (0·88) and for DHA+EPA biomarker (0·71). In girls, the highest validity coefficients were found for fruit consumption frequency (0·76), vegetable consumption frequency (0·74), mean fruit intake (0·90) and DHA+EPA biomarker (0·69). After exclusion of underreporters, correlations slightly improved. Correlations between usual food intakes, adjusted for food consumption frequency, and concentration biomarkers were higher than correlations between mean food intakes and concentration biomarkers. In conclusion, two non-consecutive 24 h recalls in combination with a FFQ seem to be appropriate to rank subjects according to their usual food intake.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evaluation of food and nutrient intake assessment using concentration biomarkers in European adolescents from the Healthy Lifestyle in Europe by Nutrition in Adolescence study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evaluation of food and nutrient intake assessment using concentration biomarkers in European adolescents from the Healthy Lifestyle in Europe by Nutrition in Adolescence study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evaluation of food and nutrient intake assessment using concentration biomarkers in European adolescents from the Healthy Lifestyle in Europe by Nutrition in Adolescence study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: S. Vandevijvere, E-mail: stefanie.vandevijvere@wiv-isp.be

References

Hide All
1Tarasuk, VS & Brooker, AS (1997) Interpreting epidemiologic studies of diet–disease relationships. J Nutr 127, 18471852.
2Beaton, GH, Milner, J, Corey, P, et al. (1979) Sources of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Am J Clin Nutr 32, 25462559.
3Beaton, GH, Burema, J & Ritenbaugh, C (1997) Errors in the interpretation of dietary assessments. Am J Clin Nutr 65, 1100S1107S.
4Freudenheim, JL & Marshall, JR (1988) The problem of profound mismeasurement and the power of epidemiological studies of diet and cancer. Nutr Cancer 11, 243250.
5Willet, W (1990) Nutritional Epidemiology. Oxford: Oxford University Press.
6Gibson, RS (2005) Principles of Nutritional Assessment, 2nd ed.New York, NY: Oxford University Press.
7Crispim, SP, Geelen, A, Souverein, OW, et al. (2011) Biomarker-based evaluation of two 24-h recalls for comparing usual fish, fruit and vegetable intakes across European centers in the EFCOVAL Study. Eur J Clin Nutr 65, Suppl. 1, S38S47.
8Crispim, SP, de Vries, JH, Geelen, A, et al. (2011) Two non-consecutive 24 h recalls using EPIC-Soft software are sufficiently valid for comparing protein and potassium intake between five European centres – results from the European Food Consumption Validation (EFCOVAL) study. Br J Nutr 105, 447458.
9Kersting, M, Sichert-Hellert, W, Vereecken, CA, et al. (2008) Food and nutrient intake, nutritional knowledge and diet-related attitudes in European adolescents. Int J Obes (Lond) 32, Suppl. 5, S35S41.
10Potischman, N (2003) Biologic and methodologic issues for nutritional biomarkers. J Nutr 133, Suppl. 3, 875S880S.
11Livingstone, MB (1995) Assessment of food intakes: are we measuring what people eat? Br J Biomed Sci 52, 5867.
12Livingstone, MB & Black, AE (2003) Markers of the validity of reported energy intake. J Nutr 133, Suppl. 3, 895S920S.
13Lissner, L (2002) Measuring food intake in studies of obesity. Public Health Nutr 5, 889892.
14Kaaks, RJ (1997) Biochemical markers as additional measurements in studies of the accuracy of dietary questionnaire measurements: conceptual issues. Am J Clin Nutr 65, 1232S1239S.
15Freedman, LS, Kipnis, V, Schatzkin, A, et al. (2010) Can we use biomarkers in combination with self-reports to strengthen the analysis of nutritional epidemiologic studies? Epidemiol Perspect Innov 7, 2.
16Macdonald, HM, Hardcastle, AC, Duthie, GG, et al. (2009) Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers. Br J Nutr 102, 14771486.
17Polsinelli, ML, Rock, CL, Henderson, SA, et al. (1998) Plasma carotenoids as biomarkers of fruit and vegetable servings in women. J Am Diet Assoc 98, 194196.
18Yeum, KJ, Booth, SL, Sadowski, JA, et al. (1996) Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. Am J Clin Nutr 64, 594602.
19Drewnowski, A, Rock, CL, Henderson, SA, et al. (1997) Serum beta-carotene and vitamin C as biomarkers of vegetable and fruit intakes in a community-based sample of French adults. Am J Clin Nutr 65, 17961802.
20Ness, AR, Khaw, KT, Bingham, S, et al. (1999) Plasma vitamin C: what does it measure? Public Health Nutr 2, 5154.
21Katan, MB, Deslypere, JP, van Birgelen, AP, et al. (1997) Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 38, 20122022.
22Zock, PL, Mensink, RP, Harryvan, J, et al. (1997) Fatty acids in serum cholesteryl esters as quantitative biomarkers of dietary intake in humans. Am J Epidemiol 145, 11141122.
23Leaf, DA, Connor, WE, Barstad, L, et al. (1995) Incorporation of dietary n-3 fatty acids into the fatty acids of human adipose tissue and plasma lipid classes. Am J Clin Nutr 62, 6873.
24Bates, CJ, Rutishauser, IH, Black, AE, et al. (1979) Long-term vitamin status and dietary intake of healthy elderly subjects. 2. Vitamin C. Br J Nutr 42, 4356.
25Jacques, PF, Sulsky, SI, Sadowski, JA, et al. (1993) Comparison of micronutrient intake measured by a dietary questionnaire and biochemical indicators of micronutrient status. Am J Clin Nutr 57, 182189.
26Wu, A, Chanarin, I, Slavin, G, et al. (1975) Folate deficiency in the alcoholic-its relationship to clinical and haematological abnormalities, liver disease and folate stores. Br J Haematol 29, 469478.
27Gregory, J, Foster, K, Tyler, H, et al. (1990) The Dietary and Nutritional Survey of British Adults. London: Her Majesty's Stationery Office.
28Andersen, LF, Solvoll, K & Drevon, CA (1996) Very-long-chain n-3 fatty acids as biomarkers for intake of fish and n-3 fatty acid concentrates. Am J Clin Nutr 64, 305311.
29Kobayashi, M, Sasaki, S, Kawabata, T, et al. (2001) Single measurement of serum phospholipid fatty acid as a biomarker of specific fatty acid intake in middle-aged Japanese men. Eur J Clin Nutr 55, 643650.
30Moreno, LA, Gonzalez-Gross, M, Kersting, M, et al. (2008) Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 11, 288299.
31Moreno, LA, De, HS, Gonzalez-Gross, M, et al. (2008) Design and implementation of the Healthy Lifestyle in Europe by Nutrition in Adolescence Cross-Sectional Study. Int J Obes (Lond) 32, Suppl. 5, S411.
32Beghin, L, Castera, M, Manios, Y, et al. (2008) Quality assurance of ethical issues and regulatory aspects relating to good clinical practices in the HELENA Cross-Sectional Study. Int J Obes (Lond) 32, Suppl. 5, S12S18.
33Vereecken, CA, Covents, M, Matthys, C, et al. (2005) Young adolescents' nutrition assessment on computer (YANA-C). Eur J Clin Nutr 59, 658667.
34Vereecken, C, Dohogne, S, Covents, M, et al. (2010) How accurate are adolescents in portion-size estimation using the computer tool Young Adolescents' Nutrition Assessment on Computer (YANA-C)? Br J Nutr 103, 18441850.
35Dehne, LI, Klemm, C, Henseler, G, et al. (1999) The German Food Code and Nutrient Data Base (BLS II.2). Eur J Epidemiol 15, 355359.
36Currie, C (1998) Health Behaviour in School-aged Children: a WHO Cross-national Survey (HBSC). Research Protocol for the 1997/1998 Survey. Edinburgh: Research Unit in Health and Behavioural Change, University of Edinburgh.
37Gonzalez-Gross, M, Breidenassel, C, Gomez-Martinez, S, et al. (2008) Sampling and processing of fresh blood samples within a European multicenter nutritional study: evaluation of biomarker stability during transport and storage. Int J Obes (Lond) 32, Suppl. 5, S66S75.
38Yokota, RT, Miyazaki, ES & Ito, MK (2010) Applying the triads method in the validation of dietary intake using biomarkers. Cad Saude Publica 26, 20272037.
39Ocke, MC & Kaaks, RJ (1997) Biochemical markers as additional measurements in dietary validity studies: application of the method of triads with examples from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 65, 1240S1245S.
40Kaaks, R & Ferrari, P (2006) Dietary intake assessments in epidemiology: can we know what we are measuring? Ann Epidemiol 16, 377380.
41Haubrock, J, Nothlings, U, Volatier, JL, et al. (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr 141, 914920.
42Goldberg, GR, Black, AE, Jebb, SA, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
43Black, AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord 24, 11191130.
44Henriquez-Sanchez, P, Sanchez-Villegas, A, Doreste-Alonso, J, et al. (2009) Dietary assessment methods for micronutrient intake: a systematic review on vitamins. Br J Nutr 102, Suppl. 1, S10S37.
45Kabagambe, EK, Baylin, A, Allan, DA, et al. (2001) Application of the method of triads to evaluate the performance of food frequency questionnaires and biomarkers as indicators of long-term dietary intake. Am J Epidemiol 154, 11261135.
46Potischman, N & Freudenheim, JL (2003) Biomarkers of nutritional exposure and nutritional status: an overview. J Nutr 133, Suppl. 3, 873S874S.
47Kaaks, R, Ferrari, P, Ciampi, A, et al. (2002) Uses and limitations of statistical accounting for random error correlations, in the validation of dietary questionnaire assessments. Public Health Nutr 5, 969976.
48Serra-Majem, L, Frost, AL, Henrique-Sanchez, P, et al. (2009) Evaluating the quality of dietary intake validation studies. Br J Nutr 102, Suppl. 1, S3S9.
49Livingstone, MB & Robson, PJ (2000) Measurement of dietary intake in children. Proc Nutr Soc 59, 279293.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed