Skip to main content Accessibility help
×
Home

Evaluation of dietary patterns among Norwegian postmenopausal women using plasma carotenoids as biomarkers

  • Marianne S. Markussen (a1), Marit B. Veierød (a1) (a2), Amrit K. Sakhi (a3), Merete Ellingjord-Dale (a4), Rune Blomhoff (a1) (a5), Giske Ursin (a1) (a4) (a6) and Lene F. Andersen (a1)...

Abstract

A number of studies have examined dietary patterns in various populations. However, to study to what extent such patterns capture meaningful differences in consumption of foods is of interest. In the present study, we identified important dietary patterns in Norwegian postmenopausal women (age 50–69 years, n 361), and evaluated these patterns by examining their associations with plasma carotenoids. Diet was assessed by a 253-item FFQ. These 253 food items were categorised into forty-six food groups, and dietary patterns were identified using principal component analysis. We used the partial correlation coefficient (r adj) and multiple linear regression analysis to examine the associations between the dietary patterns and the plasma carotenoids α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene and zeaxanthin. Overall, four dietary patterns were identified: the ‘Western’; ‘Vegetarian’; ‘Continental’; ‘High-protein’. The ‘Western’ dietary pattern scores were significantly inversely correlated with plasma lutein, zeaxanthin, lycopene and total carotenoids ( − 0·25 ≤ r adj≤ − 0·13). The ‘Vegetarian’ dietary pattern scores were significantly positively correlated with all the plasma carotenoids (0·15 ≤ r adj≤ 0·24). The ‘Continental’ dietary pattern scores were significantly inversely correlated with plasma lutein and α-carotene (r adj= − 0·13). No significant association between the ‘High-protein’ dietary pattern scores and the plasma carotenoids was found. In conclusion, the healthy dietary pattern, the ‘Vegetarian’ pattern, is associated with a more favourable profile of the plasma carotenoids than our unhealthy dietary patterns, the ‘Western’ and ‘Continental’ patterns.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evaluation of dietary patterns among Norwegian postmenopausal women using plasma carotenoids as biomarkers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evaluation of dietary patterns among Norwegian postmenopausal women using plasma carotenoids as biomarkers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evaluation of dietary patterns among Norwegian postmenopausal women using plasma carotenoids as biomarkers
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: G. Ursin, email giske.ursin@kreftregisteret.no

References

Hide All
1 Michels, KB & Schulze, MB (2005) Can dietary patterns help us detect diet–disease associations? Nutr Res Rev 18, 241248.
2 Newby, PK & Tucker, KL (2004) Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 62, 177203.
3 Lockheart, MS, Steffen, LM, Rebnord, HM, et al. (2007) Dietary patterns, food groups and myocardial infarction: a case–control study. Br J Nutr 98, 380387.
4 Sommer, C, Sletner, L, Jenum, AK, et al. (2013) Ethnic differences in maternal dietary patterns are largely explained by socio-economic score and integration score: a population-based study. Food Nutr Res 57 (epublication 8 July 2013).
5 Engeset, D, Alsaker, E, Ciampi, A, et al. (2005) Dietary patterns and lifestyle factors in the Norwegian EPIC cohort: the Norwegian Women and Cancer (NOWAC) study. Eur J Clin Nutr 59, 675684.
6 Hann, CS, Rock, CL, King, I, et al. (2001) Validation of the Healthy Eating Index with use of plasma biomarkers in a clinical sample of women. Am J Clin Nutr 74, 479486.
7 Neuhouser, ML, Patterson, RE, King, IB, et al. (2003) Selected nutritional biomarkers predict diet quality. Public Health Nutr 6, 703709.
8 Newby, PK, Muller, D & Tucker, KL (2004) Associations of empirically derived eating patterns with plasma lipid biomarkers: a comparison of factor and cluster analysis methods. Am J Clin Nutr 80, 759767.
9 Weinstein, SJ, Vogt, TM & Gerrior, SA (2004) Healthy Eating Index scores are associated with blood nutrient concentrations in the third National Health And Nutrition Examination Survey. J Am Diet Assoc 104, 576584.
10 Kant, AK & Graubard, BI (2005) A comparison of three dietary pattern indexes for predicting biomarkers of diet and disease. J Am Coll Nutr 24, 294303.
11 Panagiotakos, DB, Pitsavos, C, Skoumas, Y, et al. (2007) The association between food patterns and the metabolic syndrome using principal components analysis: the ATTICA Study. J Am Diet Assoc 107, 979987; quiz 997.
12 Nettleton, JA, Schulze, MB, Jiang, R, et al. (2008) A priori-defined dietary patterns and markers of cardiovascular disease risk in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 88, 185194.
13 Talegawkar, SA, Johnson, EJ, Carithers, TC, et al. (2008) Serum carotenoid and tocopherol concentrations vary by dietary pattern among African Americans. J Am Diet Assoc 108, 20132020.
14 McNaughton, SA, Mishra, GD & Brunner, EJ (2009) Food patterns associated with blood lipids are predictive of coronary heart disease: the Whitehall II study. Br J Nutr 102, 619624.
15 Bogl, LH, Pietilainen, KH, Rissanen, A, et al. (2013) Association between habitual dietary intake and lipoprotein subclass profile in healthy young adults. Nutr Metab Cardiovasc Dis 23, 10711078.
16 Lipsky, LM, Cheon, K, Nansel, TR, et al. (2012) Candidate measures of whole plant food intake are related to biomarkers of nutrition and health in the US population (National Health and Nutrition Examination Survey 1999–2002). Nutr Res 32, 251259.
17 Jenab, M, Slimani, N, Bictash, M, et al. (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 125, 507525.
18 Hammond, BR Jr & Renzi, LM (2013) Carotenoids. Adv Nutr 4, 474476.
19 Maiani, G, Caston, MJ, Catasta, G, et al. (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53, Suppl. 2, S194S218.
20 Alberg, A (2002) The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 180, 121137.
21 Vioque, J, Weinbrenner, T, Asensio, L, et al. (2007) Plasma concentrations of carotenoids and vitamin C are better correlated with dietary intake in normal weight than overweight and obese elderly subjects. Br J Nutr 97, 977986.
22 Al-Delaimy, WK, Ferrari, P, Slimani, N, et al. (2005) Plasma carotenoids as biomarkers of intake of fruits and vegetables: individual-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Clin Nutr 59, 13871396.
23 Hofvind, SS, Wang, H & Thoresen, S (2003) The Norwegian Breast Cancer Screening Program: re-attendance related to the women's experiences, intentions and previous screening result. Cancer Causes Control 14, 391398.
24 Hofvind, S, Geller, B, Vacek, PM, et al. (2007) Using the European guidelines to evaluate the Norwegian Breast Cancer Screening Program. Eur J Epidemiol 22, 447455.
25 Ellingjord-Dale, M, dos-Santos-Silva, I, Grotmol, T, et al. (2015) Vitamin D intake, month at mammography and mammographic density in Norwegian women aged 50–69. Submitted.
26 Andersen, LF, Solvoll, K, Johansson, LR, et al. (1999) Evaluation of a food frequency questionnaire with weighed records, fatty acids, and α-tocopherol in adipose tissue and serum. Am J Epidemiol 150, 7587.
27 Carlsen, MH, Lillegaard, IT, Karlsen, A, et al. (2010) Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent energy expenditure measurement and weighed food records. Nutr J 9, 37.
28 Carlsen, MH, Karlsen, A, Lillegaard, IT, et al. (2011) Relative validity of fruit and vegetable intake estimated from an FFQ, using carotenoid and flavonoid biomarkers and the method of triads. Br J Nutr 105, 15301538.
29 Tabachnick, BG & Fidell, FL (2007) Using Multivariate Statistics, 5th ed. New York: Pearson Education Publications.
30 Hutcheson, G & Sofroniou, N (1999) The Multivariate Social Scientist. London: Sage.
31 Ocke, MC (2013) Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis. Proc Nutr Soc 72, 191199.
32 Chocano-Bedoya, PO, O'Reilly, EJ, Lucas, M, et al. (2013) Prospective study on long-term dietary patterns and incident depression in middle-aged and older women. Am J Clin Nutr 98, 813820.
33 Weismayer, C, Anderson, JG & Wolk, A (2006) Changes in the stability of dietary patterns in a study of middle-aged Swedish women. J Nutr 136, 15821587.
34 Nimptsch, K, Malik, VS, Fung, TT, et al. (2014) Dietary patterns during high school and risk of colorectal adenoma in a cohort of middle-aged women. Int J Cancer 134, 24582467.
35 Link, LB, Canchola, AJ, Bernstein, L, et al. (2013) Dietary patterns and breast cancer risk in the California Teachers Study cohort. Am J Clin Nutr 98, 15241532.
36 Mishra, GD, McNaughton, SA, Ball, K, et al. (2010) Major dietary patterns of young and middle aged women: results from a prospective Australian cohort study. Eur J Clin Nutr 64, 11251133.
37 Pala, V, Sieri, S, Masala, G, et al. (2006) Associations between dietary pattern and lifestyle, anthropometry and other health indicators in the elderly participants of the EPIC-Italy cohort. Nutr Metab Cardiovasc Dis 16, 186201.
38 Hu, FB, Rimm, E, Smith-Warner, SA, et al. (1999) Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am J Clin Nutr 69, 243249.
39 Pryer, JA, Cook, A & Shetty, P (2001) Identification of groups who report similar patterns of diet among a representative national sample of British adults aged 65 years of age or more. Public Health Nutr 4, 787795.
40 Wang, XD (2012) Lycopene metabolism and its biological significance. Am J Clin Nutr 96, 1214S1222S.
41 Hendrickson, SJ, Willett, WC, Rosner, BA, et al. (2013) Food predictors of plasma carotenoids. Nutrients 5, 40514066.
42 Arkkola, T, Uusitalo, U, Kronberg-Kippila, C, et al. (2008) Seven distinct dietary patterns identified among pregnant Finnish women – associations with nutrient intake and sociodemographic factors. Public Health Nutr 11, 176182.
43 Schatzkin, A & Kipnis, V (2004) Could exposure assessment problems give us wrong answers to nutrition and cancer questions? J Natl Cancer Inst 96, 15641565.
44 Kristal, AR, Peters, U & Potter, JD (2005) Is it time to abandon the food frequency questionnaire? Cancer Epidemiol Biomarkers Prev 14, 28262828.
45 Subar, AF, Thompson, FE, Smith, AF, et al. (1995) Improving food frequency questionnaires: a qualitative approach using cognitive interviewing. J Am Diet Assoc 95, 781788; quiz 789–790.
46 Patterson, RE, Kristal, AR, Tinker, LF, et al. (1999) Measurement characteristics of the Women's Health Initiative food frequency questionnaire. Ann Epidemiol 9, 178187.
47 Neuhouser, ML, Tinker, L, Shaw, PA, et al. (2008) Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women's Health Initiative. Am J Epidemiol 167, 12471259.
48 Hebert, JR, Clemow, L, Pbert, L, et al. (1995) Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int J Epidemiol 24, 389398.
49 Northstone, K, Ness, AR, Emmett, PM, et al. (2008) Adjusting for energy intake in dietary pattern investigations using principal components analysis. Eur J Clin Nutr 62, 931938.
50 Willett, WC (2013) Nutritional Epidemiology, 3rd ed. New York: Oxford University Press.
51 Smith, AD, Emmett, PM, Newby, PK, et al. (2013) Dietary patterns obtained through principal components analysis: the effect of input variable quantification. Br J Nutr 109, 18811891.
52 Northstone, K & Emmett, PM (2010) Dietary patterns of men in ALSPAC: associations with socio-demographic and lifestyle characteristics, nutrient intake and comparison with women's dietary patterns. Eur J Clin Nutr 64, 978986.
53 Kesse-Guyot, E, Bertrais, S, Peneau, S, et al. (2009) Dietary patterns and their sociodemographic and behavioural correlates in French middle-aged adults from the SU.VI.MAX cohort. Eur J Clin Nutr 63, 521528.
54 Lioret, S, McNaughton, SA, Crawford, D, et al. (2012) Parents' dietary patterns are significantly correlated: findings from the Melbourne Infant Feeding Activity and Nutrition Trial Program. Br J Nutr 108, 518526.
55 Cade, JE & Margetts, BM (1991) Relationship between diet and smoking – is the diet of smokers different? J Epidemiol Community Health 45, 270272.
56 Dyer, AR, Elliott, P, Stamler, J, et al. (2003) Dietary intake in male and female smokers, ex-smokers, and never smokers: the INTERMAP study. J Hum Hypertens 17, 641654.

Keywords

Related content

Powered by UNSILO

Evaluation of dietary patterns among Norwegian postmenopausal women using plasma carotenoids as biomarkers

  • Marianne S. Markussen (a1), Marit B. Veierød (a1) (a2), Amrit K. Sakhi (a3), Merete Ellingjord-Dale (a4), Rune Blomhoff (a1) (a5), Giske Ursin (a1) (a4) (a6) and Lene F. Andersen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.