Skip to main content Accessibility help
×
Home

Estimation of the energy costs of locomotion in the Iberian pig(Sus mediterraneus)

  • M. Lachica (a1) and J. F. Aguilera (a1)

Abstract

The energy cost of locomotion of four Iberian pigs was measured in two experiments conducted when the animals averaged 41·3 (se 0·1) kg (first experiment) and 84·1 (se 0·1) kg (second experiment). The heat production of the pigs was determined when standing or walking at a speed of 0·555 m/s on a treadmill enclosed in a confinement-type respiration chamber, on different slopes (-10·5, 0, and +10·5 % in the first experiment, and -5·25, 0 and +10·5 % in the second experiment). The energy costs of locomotion, estimated from the coefficients of linear regressions of heat production per kg body weight (BW) on distance travelled, were in the first experiment 2·99, 3·31 and 5·88 J/kg BW per m for -10·5, 0, and +10·5 % inclines respectively, and 2·56, 2·84 and 7·13 J/kg BW per m for -5·25, 0 and +10·5 % inclines respectively, in the second experiment. The net energy cost of locomotion on the level appeared to be independent of live weight, attaining a value of 2·98 J/kg BW per m. Also, it was found that within experiments the net energy cost of walking on negative slopes was similar to that for locomotion on the level, indicating that no energy was recovered on vertical descent. Mean values were 3·11 and 2·72 kJ/kg BW per m for the light and heavy pigs respectively. The energy cost of raising 1 kg BW one vertical metre was found to be 27·1 J/kg BW per m in the first experiment and 40·0 J/kg BW per m in the second experiment. Correspondingly, the calculated efficiency for upslope locomotion appeared to decline with increasing BW, resulting in average values of 36·2 and 24·5 %.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of the energy costs of locomotion in the Iberian pig(Sus mediterraneus)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of the energy costs of locomotion in the Iberian pig(Sus mediterraneus)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of the energy costs of locomotion in the Iberian pig(Sus mediterraneus)
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr J. F. Aguilera, fax +34 958 572753, email aguilera@eez.csic.es

References

Hide All
Agricultural Research Council (1980) The Nutrient Requirements of Ruminant Livestock. Slough: Commonwealth Agricultural Bureaux.
Agricultural Research Council (1981) The Nutrient Requirements of Pigs. Slough: Commonwealth Agricultural Bureaux.
Booth, ME, Pearson, RA & Cuddeford, D (1992) The effect of speed of walking on the energy cost of walking in ponies. In 43rd Annual Meeting of the European Association for Animal Production, pp. 542. Madrid: EEAP.
Boyne, AW, Brockway, JM, Ingram, JF & Williams, K (1981) Modification, by tractive loading, of the energy cost of working in sheep, cattle and man. Journal of Physiology 315, 303316.
Brockway, JM & Boyne, AW (1980) The energy cost for sheep of walking on gradients. InEnergy Metabolism of Farm Animals. European Association for Animal Production Publication no. 26, pp. 449453 [Mount, LE, editor]. London: Butterworths.
Brockway, JM & Gessaman, JA (1977) The energy cost of locomotion on the level and on gradients for the red deer. (Cervus elaphus) Quarterly Journal of Experimental Physiology 62, 333339.
Brody, S (1945) Bioenergetics and Growth with Special to the Efficiency Complex in Domestic Animals. New York, NY: Reinhold.
Brouwer, E (1965) Report of Sub-committee on Constants and Factors. In Energy Metabolism of Farm Animals. European Association for Animal Production Publication no. 11, pp. 441443 [Blaxter, KL, editor]. London: Academic Press.
Clapperton, JL (1964) The energy metabolism of sheep walking on the level and on gradients. British Journal of Nutrition 18, 4754.
Cohen, Y, Robbins, CT & Davitt, BB (1978) Oxygen utilization by elk calves during horizontal and vertical locomotion compared to other species. Comparative Biochemistry and Physiology 61A, 4348.
Dailey, TV & Hobbs, NT (1989) Travel in alpine terrain: energy expenditures for locomotion by mountain goats and bighorn sheep. Canadian Journal of Zoology 67, 23682375.
Dijkman, JT (1992) A note on the influence of negative gradients on the energy expenditure of donkeys walking, carrying and pulling loads. Animal Production 54, 153156.
Fancy, SG & White, RG (1985) Incremental cost of activity. InBioenergetics of Wild Herbivores, pp. 143160 [Hudson, RJ, and White, RG, editors]. Boca Raton, FL: CRC Press.
Farrell, DJ, Leng, RA & Corbett, JL (1972) Undernutrition in grazing sheep. II. Calorimetic measurements on sheep taken from pasture. Australian Journal of Agricultural Research 23, 466509.
Jakobsen, K, Chwalibog, A, Henckel, S & Thorbek, G (1994) Heat production and quantitative oxidation of nutrients by physical activity in pigs. Annals of Nutrition and Metabolism 38, 17.
Lachica, M, Aguilera, JF & Prieto, C (1995) A confinement respiration chamber for short gaseous exchange measurements. Archives of Animal Nutrition 48, 329336.
Lachica, M, Prieto, C & Aguilera, JF (1997) The energy cost of walking on the level and on negative and positive slopes in the Granadina goat. (Capra hircus) British Journal of Nutrition 77, 7381.
Lawrence, PR & Stibbards, RJ (1990) The energy cost of walking, carrying and pulling loads on flat surfaces by Brahman cattle and swamp buffalo. Animal Production 50, 2939.
Margaria, R, Cerretelli, R, Aghemo, P & Sassi, G (1963) Energy cost of running. Journal of Applied Physiology 18, 367370.
Nienaber, JA, Chen, YR & Hahn, GL (1985) Energetics of activity using indirect calorimetry. In Energy Metabolism of Farm Animals. European Association for Animal Production Publication no. 32, pp. 164167 [Moe, PW, Tyrrell, HF and Reynolds, PJ, editors]. Beltsville, MD: ARS, USDA.
Noblet, J, Shi, XS & Dubois, S (1993) Energy cost of standing activity in sows. Livestock Production Science 34, 127136.
Parker, KL, Robbins, CT & Hanley, TA (1984) Energy expenditures for locomotion by mule deer and elk. Journal of Wildlife Management 48, 474488.
Petley, MP & Bayley, HS (1988) Exercise and postexercise energy expenditure in growing pigs. Canadian Journal of Physiology and Pharmacology 66, 721730.
Ribeiro, JM, De, CR, Brockway, JM & Webster, AJF (1977) A note on the energy cost of walking in cattle. Animal Production 25, 107110.
Shibata, M, Mukai, A & Kume, S (1981) Estimation of energy expenditure in dairy heifers walking on the level and on gradients. Bulletin of the Kyushu National Agricultural Experiment Station 21, 589607.
Steel, RGD & Torrie, JH (1981) Principles and Procedures of Statistics. A Biometrical Approach, 2nd ed. London: McGraw-Hill International Book Company.
Taylor, CR & Heglund, NC (1982) Energetics and mechanics of terrestrial locomotion. Annual Reviews of Physiology 44, 97107.
Taylor, CR, Schmidt-Nielsen, K & Raab, JL (1970) Scaling of energetic cost of running to body size in mammals. American Journal of Physiology 291, 11041107.
Taylor, CR, Shkolnik, A, Dmi'el, R, Baharav, D & Borut, A (1974) Running in cheetahs, gazelles and goats: energy cost and limb configuration. American Journal of Physiology 227, 848850.
White, RG & Yousef, MK (1978) Energy expenditure in reindeer walking on roads and on tundra. Canadian Journal of Zoology 56, 215223.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed