Skip to main content Accessibility help

Energy restriction in renal protection

  • Si-Yang Wang (a1), Guang-Yan Cai (a1) and Xiang-Mei Chen (a1)


Energy restriction (ER) has been widely studied as a novel intervention, and its ability to prolong life has been fully demonstrated. For example, ER can significantly extend the lifespans of model flies, worms, rodents and other mammals. The role of ER in renal protection has also been elucidated. In preclinical studies, adjusting total energy intake or consumption of specific nutrients has prophylactic or therapeutic effects on ageing-related kidney disease and acute and chronic kidney injury. Amino acid restriction has gradually attracted attention. ER mimetics have also been studied in depth. The protective mechanisms of ER and ER mimetics for renal injury include increasing AMP-activated protein kinase and sirtuin type 1 (Sirt1) levels and autophagy and reducing mammalian target of rapamycin, inflammation and oxidative stress. However, the renal protective effect of ER has mostly been investigated in rodent models, and the role of ER in patients cannot be determined due to the lack of large randomised controlled trials. To protect the kidney, the mechanism of ER must be thoroughly researched, and more accurate diet or drug interventions need to be identified.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energy restriction in renal protection
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Energy restriction in renal protection
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Energy restriction in renal protection
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Dr G.-Y. Cai, fax +86 10 6813 0297, email


Hide All
1. McCay, CM, Crowell, MF & Maynard, LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5, 6379.
2. Colman, RJ, Anderson, RM, Johnson, SC, et al. (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201204.
3. Remuzzi, G & Horton, R (2013) Acute renal failure: an unacceptable death sentence globally. Lancet 382, 20412042.
4. Susantitaphong, P, Cruz, DN, Cerda, J, et al. (2013) World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 8, 14821493.
5. Kaddourah, A, Basu, RK, Bagshaw, SM, et al. (2016) Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376, 1120.
6. Kirk, KL (1993) Dietary restriction and aging. J Am Geriatr Soc 41, 994999.
7. Wiggins, J & Bitzer, M (2013) Slowing the aging process. Clin Geriatr Med 29, 721730.
8. Xu, XM, Cai, GY, Bu, R, et al. (2015) Beneficial effects of caloric restriction on chronic kidney disease in rodent models: a meta-analysis and systematic review. PLOS ONE 10, e0144442.
9. Khorakova, M, Deil, Z, Khausman, D, et al. (1990) Effect of carbohydrate-enriched diet and subsequent food restriction on life prolongation in Fischer 344 male rats. Fiziol Zh 36, 1621.
10. Shimokawa, I, Higami, Y, Yu, BP, et al. (1996) Influence of dietary components on occurrence of and mortality due to neoplasms in male F344 rats. Aging 8, 254262.
11. Sanchez-Roman, I & Barja, G (2013) Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 48, 10301042.
12. Grandison, RC, Piper, MD & Partridge, L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila . Nature 462, 10611064.
13. Zhuo, L, Cai, G, Liu, F, et al. (2009) Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging. Mech Age Dev 130, 700708.
14. Shavlakadze, T, Zhu, J, Wang, S, et al. (2018) Short-term low-dose mTORC1 inhibition in aged rats counter-regulates age-related gene changes and blocks age-related kidney pathology. J Gerontol A Biol Sci Med Sci 73, 845852.
15. Guo, YN, Wang, JC, Cai, GY, et al. (2014) AMPK-mediated downregulation of connexin43 and premature senescence of mesangial cells under high-glucose conditions. Exp Gerontol 51, 7181.
16. Dong, D, Cai, GY, Ning, YC, et al. (2017) Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling. Oncotarget 8, 1610916121.
17. Chau, BN, Xin, C, Hartner, J, et al. (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4, 121ra118.
18. Lopez-Dominguez, JA, Ramsey, JJ, Tran, D, et al. (2015) The influence of dietary fat source on life span in calorie restricted mice. J Gerontol A Biol Sci Med Sci 70, 11811188.
19. Calvo-Rubio, M, Buron, MI, Lopez-Lluch, G, et al. (2016) Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice. Aging Cell 15, 477487.
20. Kim, HJ, Jung, KJ, Ji, SY, et al. (2006) The inflammatory process in aging. Antioxid Redox Signal 8, 572581.
21. Salminen, A, Huuskonen, J, Ojala, J, et al. (2008) Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7, 83105.
22. Jurk, D, Wilson, C, Passos, JF, et al. (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2, 4172.
23. Moiseeva, O, Mallette, FA, Mukhopadhyay, UK, et al. (2006) DNA damage signaling and p53-dependent senescence after prolonged β-interferon stimulation. Mol Biol Cell 17, 15831592.
24. Tremain, R, Marko, M, Kinnimulki, V, et al. (2000) Defects in TGF-beta signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras. Oncogene 19, 16981709.
25. Kooman, J, Dekker, M, Usvyat, LA, et al. (2017) Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol Renal Physiol 313, F938F950.
26. Csiszar, A, Gautam, T, Sosnowska, D, et al. (2014) Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am J Physiol Heart Circ Physiol 307, H292H306.
27. Bolignano, D, Mattaceraso, F, Sijbrands, EJ, et al. (2014) The aging kidney revisited: a systematic review. Ageing Res Rev 14, 6580.
28. Mohammadi, M, Ghaznavi, R, Keyhanmanesh, R, et al. (2014) Caloric restriction prevents lead-induced oxidative stress and inflammation in rat liver. ScientificWorldJournal 2014, 821524.
29. Mitchell, JR, Verweij, M, Brand, K, et al. (2010) Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell 9, 4053.
30. Xu, XM, Ning, YC, Wang, WJ, et al. (2015) Anti-inflamm-aging effects of long-term caloric restriction via overexpression of sigirr to inhibit NF-κB signaling pathway. Cell Physiol Biochem 37, 12571270.
31. Qin, J, Qian, Y, Yao, J, et al. (2005) SIGIRR inhibits interleukin-1 receptor- and Toll-like receptor 4-mediated signaling through different mechanisms. J Biol Chem 280, 2523325241.
32. Leemans, JC, Butter, LM, Teske, GJ, et al. (2012) The Toll interleukin-1 receptor (IL-1R) 8/single Ig domain IL-1R-related molecule modulates the renal response to bacterial infection. Infect Immun 80, 38123820.
33. Skuginna, V, Lech, M, Allam, R, et al. (2011) Toll-like receptor signaling and SIGIRR in renal fibrosis upon unilateral ureteral obstruction. PLoS ONE 6, e19204.
34. Harman, D (1981) The aging process. Proc Natl Acad Sci U S A 78, 71247128.
35. Liu, J, Wang, X, Shigenaga, MK, et al. (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10, 15321538.
36. Shimazu, T, Hirschey, MD, Newman, J, et al. (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211214.
37. Hine, C, Harputlugil, E, Zhang, Y, et al. (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160, 132144.
38. Pamplona, R & Barja, G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757, 496508.
39. Sanchez-Roman, I & Barja, G (2013) Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 48, 10301042.
40. Sanchez-Roman, I, Gómez, A, Pérez, I, et al. (2012) Effects of aging and methionine restriction applied at old age on ROS generation and oxidative damage in rat liver mitochondria. Biogerontology 13, 399411.
41. Wang, WJ, Cai, GY, Ning, YC, et al. (2016) Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats. Sci Rep 6, 30292.
42. Li, J, Qu, X, Ricardo, SD, et al. (2010) Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of smad3. Am J Pathol 177, 10651071.
43. Liang, F, Kume, S & Koya, D (2009) SIRT1 and insulin resistance. Nat Rev Endocrinol 5, 367373.
44. Kitada, M, Takeda, A, Nagai, T, et al. (2011) Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res 2011, 908185.
45. Kume, S, Uzu, T, Horiike, K, et al. (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120, 10431055.
46. Kume, S, Yamahara, K, Yasuda, M, et al. (2014) Autophagy: emerging therapeutic target for diabetic nephropathy. Semin Nephrol 34, 916.
47. Cui, J, Shi, S, Sun, X, et al. (2013) Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PLOS ONE 8, e69720.
48. Sakao, Y, Kato, A, Tsuji, T, et al. (2011) Cisplatin induces Sirt1 in association with histone deacetylation and increased Werner syndrome protein in the kidney. Clin Exp Nephrol 15, 363372.
49. Ning, YC, Cai, GY, Zhuo, L, et al. (2013) Beneficial effects of short-term calorie restriction against cisplatin-induced acute renal injury in aged rats. Nephron Exp Nephrol 124, 1927.
50. Yoshizaki, T, Schenk, S, Imamura, T, et al. (2010) SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 298, E419E428.
51. Kume, S, Kitada, M, Kanasaki, K, et al. (2013) Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Arch Pharm Res 36, 230236.
52. Jongbloed, F, Saat, TC, Verweij, M, et al. (2017) A signature of renal stress resistance induced by short-term dietary restriction, fasting, and protein restriction. Sci Rep 7, 40901.
53. De Miguel, C, Lund, H & Mattson, DL (2011) High dietary protein exacerbates hypertension and renal damage in Dahl SS rats by increasing infiltrating immune cells in the kidney. Hypertension 57, 269274.
54. Robertson, LT, Treviñovillarreal, JH, Mejia, P, et al. (2015) Protein and calorie restriction contribute additively to protection from renal ischemia reperfusion injury partly via leptin reduction in male mice. J Nutr 145, 17171727.
55. Mori, H, Inoki, K, Masutani, K, et al. (2009) The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem Biophys Res Commun 384, 471475.
56. Kumagai, H, Katoh, S, Hirosawa, K, et al. (2002) Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia. Kidney Int 62, 12191228.
57. Gomez, J, Caro, P, Sanchez, I, et al. (2009) Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. J Bioenerg Biomembr 41, 309321.
58. Caro, P, Gomez, J, Sanchez, I, et al. (2009) Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuvenation Res 12, 421434.
59. Naudí, A, Jové, M, Ayala, V, et al. (2011) Regulation of membrane unsaturation as antioxidant adaptive mechanism in long-lived animal species. Free Radic Antioxid 1, 312.
60. Yang, G (2009) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322, 587590.
61. Paul, BD & Snyder, SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13, 499507.
62. Miller, DL & Roth, MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans . Proc Natl Acad Sci U S A 104, 2061820622.
63. Blackstone, E, Morrison, M & Roth, MB (2005) H2S induces a suspended animation-like state in mice. Science 308, 518.
64. Longchamp, A, Mirabella, T, Arduini, A, et al. (2018) Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell 173, 117129.
65. Shang, Z, Chao, L, Chen, S, et al. (2012) Effect of H2S on the circadian rhythm of mouse hepatocytes. Lipids Health Dis 11, 23.
66. Ying, C, Meng, Q, Wang, C, et al. (2010) Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue. Diabetes 59, 1725.
67. Fontana, L, Cummings, N, Arriolaapelo, S, et al. (2016) Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep 16, 520530.
68. Lees, EK, Banks, R, Cook, C, et al. (2017) Direct comparison of methionine restriction with leucine restriction on the metabolic health of C57BL/6J mice. Sci Rep 7, 9977.
69. Artunc, F, Schleicher, E, Weigert, C, et al. (2016) The impact of insulin resistance on the kidney and vasculature. Nat Rev Nephrol 12, 721737.
70. Aparicio, M, Bellizzi, V, Chauveau, P, et al. (2012) Protein-restricted diets plus keto/amino acids – a valid therapeutic approach for chronic kidney disease patients. J Ren Nutr 22, S1S21.
71. Gao, X, Huang, L, Grosjean, F, et al. (2011) Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15. Kidney Int 79, 987996.
72. Ingram, DK, Zhu, M, Mamczarz, J, et al. (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5, 97108.
73. Dowling, RJ, Zakikhani, M, Fantus, IG, et al. (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67, 1080410812.
74. Anisimov, VN, Berstein, LM, Egormin, PA, et al. (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7, 27692773.
75. Cufi, S, Vazquez-Martin, A, Oliveras-Ferraros, C, et al. (2010) Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle 9, 44614468.
76. Takiyama, Y, Harumi, T, Watanabe, J, et al. (2011) Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1α expression and oxygen metabolism. Diabetes 60, 981992.
77. Crowley, MJ, Diamantidis, CJ, Mcduffie, JR, et al. (2017) Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review. Ann Intern Med 166, 191200.
78. Strong, R, Miller, RA, Antebi, A, et al. (2016) Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α‐glucosidase inhibitor or a Nrf2‐inducer. Aging Cell 15, 872884.
79. Tsang, CK, Qi, H, Liu, LF, et al. (2007) Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 12, 112124.
80. Shinji, K & Daisuke, K (2015) Autophagy: a novel therapeutic target for diabetic nephropathy. Diabetes Metab J 39, 451460.
81. Shillingford, JM, Murcia, NS, Larson, CH, et al. (2006) From the cover: the mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103, 54665471.
82. Kipp, KR, Rezaei, M, Lin, L, et al. (2016) A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol 310, F726F731.
83. Warner, G, Hein, KZ, Nin, V, et al. (2015) Food restriction ameliorates the development of polycystic kidney disease. J Am Soc Nephrol 27, 14371447.
84. Kitada, M, Kume, S, Takeda-Watanabe, A, et al. (2013) Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) 124, 153164.
85. Kitada, M & Koya, D (2013) Renal protective effects of resveratrol. Oxid Med Cellular Longev 2013, 568093.
86. Do Amaral, CL, Francescato, HD, Coimbra, TM, et al. (2008) Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch Toxicol 82, 363370.
87. Hong, YA, Bae, SY, Ahn, SY, et al. (2017) Resveratrol ameliorates contrast induced nephropathy through the activation of SIRT1-PGC-1α-Foxo1 signaling in mice. Kidney Blood Press Res 42, 641653.
88. Holthoff, JH, Wang, Z, Seely, KA, et al. (2012) Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int 81, 370378.
89. Shu, W, Hasegawa, K & Itoh, H (2015) Sirtuin and metabolic kidney disease. Kidney Int 88, 691698.
90. Kim, MY, Lim, JH, Youn, HH, et al. (2013) Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia 56, 204217.
91. Godel, M, Hartleben, B, Herbach, N, et al. (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 121, 21972209.
92. Inoki, K, Mori, H, Wang, J, et al. (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121, 21812196.
93. Liu, M, Wilk, SA, Wang, A, et al. (2010) Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem 285, 3638736394.
94. Giordani, I, Malandrucco, I, Donno, S, et al. (2014) Acute caloric restriction improves glomerular filtration rate in patients with morbid obesity and type 2 diabetes. Diabetes Metab 40, 158160.
95. Friedman, AN, Chambers, M, Kamendulis, LM, et al. (2013) Short-term changes after a weight reduction intervention in advanced diabetic nephropathy. Clin J Am Soc Nephrol 8, 18921898.
96. Morales, E, Valero, MA, Leon, M, et al. (2003) Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis 41, 319327.
97. Stenvinkel, P, Kooman, JP & Shiels, PG (2016) Nutrients and ageing: what can we learn about ageing interactions from animal biology? Curr Opin Clin Nutr Metab Care 19, 1925.
98. Kempner, W (1946) Some effects of the rice diet treatment of kidney disease and hypertension. Bull N Y Acad Med 22, 358370.
99. Kempner, W (1949) Treatment of heart and kidney disease and of hypertensive and arteriosclerotic vascular disease with the rice diet. Ann Intern Med 31, 821856.
100. Bellizzi, V, Iorio, BRD, Nicola, LD, et al. (2007) Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int 71, 245251.
101. Di Iorio, BR, Minutolo, R, De Nicola, L, et al. (2003) Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int 64, 18221828.
102. Rigalleau, V, Blanchetier, V, Combe, C, et al. (1997) A low-protein diet improves insulin sensitivity of endogenous glucose production in predialytic uremic patients. Am J Clin Nutr 65, 15121516.
103. Combe, C, Morel, D, Précigout, VD, et al. (1995) Long-term control of hyperparathyroidism in advanced renal failure by low-phosphorus low-protein diet supplemented with calcium (without changes in plasma calcitriol). Nephron 70, 287295.
104. Williams, PS, Stevens, ME, Fass, G, et al. (1991) Failure of dietary protein and phosphate restriction to retard the rate of progression of chronic renal failure: a prospective, randomized, controlled trial. Pediatr Nephrol 81, 837855.
105. Malvy, D, Maingourd, C, Pengloan, J, et al. (1999) Effects of severe protein restriction with ketoanalogues in advanced renal failure. J Am Coll Nutr 18, 481486.
106. Cianciaruso, B, Pota, A, Bellizzi, V, et al. (2009) Effect of a low- versus moderate-protein diet on progression of CKD: follow-up of a randomized controlled trial. Am J Kidney Dis 54, 10521061.
107. He, FJ, Marciniak, M, Visagie, E, et al. (2009) Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension 54, 482488.
108. Slagman, MC, Kwakernaak, AJ, Yazdani, S, et al. (2012) Vascular endothelial growth factor C levels are modulated by dietary salt intake in proteinuric chronic kidney disease patients and in healthy subjects. Nephrol Dial Transplant 27, 978982.
109. Swift, PA, Markandu, ND, Sagnella, GA, et al. (2005) Modest salt reduction reduces blood pressure and urine protein excretion in black hypertensives: a randomized control trial. Hypertension 46, 308312.
110. McMahon, EJ, Campbell, KL, Bauer, JD, et al. (2015) Altered Dietary Salt Intake for People with Chronic Kidney Disease. Hoboken, NJ: John Wiley & Sons Ltd.
111. Mcclelland, R, Christensen, K, Mohammed, S, et al. (2016) Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake. Aging 8, 11351148.
112. Kuroo, M (2013) A phosphate-centric paradigm for pathophysiology and therapy of chronic kidney disease. Kidney Int Suppl 3, 420426.
113. Finch, JL, Lee, DH, Liapis, H, et al. (2013) Phosphate restriction significantly reduces mortality in uremic rats with established vascular calcification. Kidney Int 84, 11451153.
114. Adema, AY, Borst, MHD, Wee, PMT, et al. (2014) Dietary and pharmacological modification of fibroblast growth factor-23 in chronic kidney disease. J Renal Nutr 24, 143150.
115. Langman, CB & Salusky, IB (2005) K/DOQI clinical practice guidelines for bone metabolism and disease in children with chronic kidney disease – foreword. Am J Kidney Dis 46, S6S121.
116. Selamet, U, Tighiouart, H, Sarnak, MJ, et al. (2015) Relationship of dietary phosphate intake with risk of end-stage renal disease and mortality in chronic kidney disease stages 3–5: The Modification of Diet in Renal Disease Study. Lancet 380, 16621673.
117. De-Boer, I & Rue, TB (2009) Serum phosphorus concentrations in the third national health and nutrition examination survey (NHANES III). Am J Kidney Dis 53, 399407.
118. Sullivan, C, Sayre, SS, Leon, JB, et al. (2009) Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 301, 629635.
119. Simmons, MN, Schreiber, MJ & Gill, IS (2008) Surgical renal ischemia: a contemporary overview. J Urol 180, 1930.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed