Skip to main content Accessibility help
×
×
Home

Endogenous plasma glucagon-like peptide-1 following acute dietary fibre consumption

  • Caroline L. Bodinham (a1), Najlaa M. Al-Mana (a1), Leanne Smith (a1) and M. Denise Robertson (a1)

Abstract

SCFA resulting from the microbial fermentation of carbohydrates have been linked to increased glucagon-like peptide-1 (GLP-1) secretion from the gastrointestinal tract in cell and animal models; however, there is little direct evidence in human subjects to confirm this. The present study was designed to investigate whether endogenous plasma GLP-1 concentrations increase following acute consumption of 48 g dietary fibre (as resistant starch (RS) from high-amylose maize type 2 RS (HAM-RS2)) compared with a matched placebo. A total of thirty healthy males participated in the present randomised cross-over study where HAM-RS2 or placebo was consumed as part of standardised breakfast and lunch meals. Changes to GLP-1, glucose, insulin and C-peptide were assessed half hourly for 7 h. Following the breakfast meal, plasma GLP-1 concentrations were lower with HAM-RS2 compared with the placebo (P =0·025). However, there was no significant difference between the supplements following the lunch meal. Plasma insulin concentrations were significantly lower following the lunch meal (P =0·034) with HAM-RS2 than with the placebo, but were not different after breakfast. Plasma glucose and C-peptide concentrations did not differ at any point. These results suggest that increased dietary fibre intake, in the form of HAM-RS2, does not acutely increase endogenous GLP-1 concentrations in human subjects. Further fibre feeding studies are required to determine whether GLP-1 concentrations may increase following longer-term consumption.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Endogenous plasma glucagon-like peptide-1 following acute dietary fibre consumption
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Endogenous plasma glucagon-like peptide-1 following acute dietary fibre consumption
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Endogenous plasma glucagon-like peptide-1 following acute dietary fibre consumption
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr C. L. Bodinham, fax +44 1483 688501, email caroline.bodinham@surrey.ac.uk

References

Hide All
1Kim, W & Egan, JM (2008) The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60, 470512.
2Tolhurst, G, Heffron, H, Lam, YS, et al. (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364371.
3Zhou, J, Martin, RJ, Tulley, RT, et al. (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295, E1160E1166.
4Keenan, MJ, Zhou, J, McCutcheon, KL, et al. (2006) Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat. Obesity (Silver Spring) 14, 15231534.
5Shen, L, Keenan, MJ, Martin, RJ, et al. (2009) Dietary resistant starch increases hypothalamic POMC expression in rats. Obesity (Silver Spring) 17, 4045.
6Robertson, MD, Currie, JM, Morgan, LM, et al. (2003) Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia 46, 659665.
7Robertson, MD, Bickerton, AS, Dennis, AL, et al. (2005) Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr 82, 559567.
8Raben, A, Tagliabue, A, Christensen, NJ, et al. (1994) Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety. Am J Clin Nutr 60, 544551.
9Johnston, KL, Thomas, EL, Bell, JD, et al. (2010) Resistant starch improves insulin sensitivity in metabolic syndrome. Diabet Med 27, 391397.
10Maki, KC, Pelkman, CL, Finocchiaro, ET, et al. (2012) Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J Nutr 142, 717723.
11Bodinham, CL, Smith, L, Wright, J, et al. (2012) Dietary fibre improves first-phase insulin secretion in overweight individuals. PLoS One 7, e40834.
12Bodinham, CL, Frost, GS & Robertson, MD (2010) Acute ingestion of resistant starch reduces food intake in healthy adults. Br J Nutr 103, 917922.
13Willis, HJ, Eldridge, AL, Beiseigel, J, et al. (2009) Greater satiety response with resistant starch and corn bran in human subjects. Nutr Res 29, 100105.
14Liljeberg, HG, Akerberg, AK & Bjorck, IM (1999) Effect of the glycemic index and content of indigestible carbohydrates of cereal-based breakfast meals on glucose tolerance at lunch in healthy subjects. Am J Clin Nutr 69, 647655.
15Nilsson, AC, Ostman, EM, Holst, JJ, et al. (2008) Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. J Nutr 138, 732739.
16Zhou, J, Hegsted, M, McCutcheon, KL, et al. (2006) Peptide YY and proglucagon mRNA expression patterns and regulation in the gut. Obesity (Silver Spring) 14, 683689.
17Freeland, KR, Wilson, C & Wolever, TM (2010) Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr 103, 8290.
18Adam, TC & Westerterp-Plantenga, MS (2005) Glucagon-like peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr 93, 845851.
19Tarini, J & Wolever, TM (2010) The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Appl Physiol Nutr Metab 35, 916.
20Barone Lumaga, R, Azzali, D, Fogliano, V, et al. (2012) Sugar and dietary fibre composition influence, by different hormonal response, the satiating capacity of a fruit-based and a beta-glucan-enriched beverage. Food Funct 3, 6775.
21Frost, GS, Brynes, AE, Dhillo, WS, et al. (2003) The effects of fiber enrichment of pasta and fat content on gastric emptying, GLP-1, glucose, and insulin responses to a meal. Eur J Clin Nutr 57, 293298.
22Klosterbuer, A, Greaves, K & Slavin, J (2012) Fiber intake inconsistently alters gut hormone levels in humans following acute or chronic intake. J Food Res 1, 255273.
23Robertson, MD (2012) Dietary-resistant starch and glucose metabolism. Curr Opin Clin Nutr Metab Care 15, 362367.
24Flint, A, Raben, A, Ersboll, AK, et al. (2001) The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes Relat Metab Disord 25, 781792.
25Verdich, C, Toubro, S, Buemann, B, et al. (2001) The role of postprandial releases of insulin and incretin hormones in meal-induced satiety – effect of obesity and weight reduction. Int J Obes Relat Metab Disord 25, 12061214.
26Elahi, D, Egan, JM, Shannon, RP, et al. (2008) GLP-1 (9–36) amide, cleavage product of GLP-1 (7–36) amide, is a glucoregulatory peptide. Obesity (Silver Spring) 16, 15011509.
27Meier, JJ, Gethmann, A, Nauck, MA, et al. (2006) The glucagon-like peptide-1 metabolite GLP-1-(9–36) amide reduces postprandial glycemia independently of gastric emptying and insulin secretion in humans. Am J Physiol Endocrinol Metab 290, E1118E1123.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed