Skip to main content Accessibility help
×
Home

Electronic Dietary Intake Assessment (e-DIA): relative validity of a mobile phone application to measure intake of food groups

  • Anna M. Rangan (a1), Laurissa Tieleman (a1), Jimmy C. Y. Louie (a1), Lie Ming Tang (a2), Lana Hebden (a1), Rajshri Roy (a1), Judy Kay (a2) and Margaret Allman-Farinelli (a1)...

Abstract

Automation of dietary assessment can reduce limitations of established methodologies, by alleviating participant and researcher burden. Designed as a research tool, the electronic Dietary Intake Assessment (e-DIA) is a food record in mobile phone application format. The present study aimed to examine the relative validity of the e-DIA with the 24-h recall method to estimate intake of food groups. A sample of eighty university students aged 19–24 years recorded 5 d of e-DIA and 3 d of recall within this 5-d period. The three matching days of dietary data were used for analysis. Food intake data were disaggregated and apportioned to one of eight food groups. Median intakes of food groups were similar between the methods, and strong correlations were found (mean: 0·79, range: 0·69–0·88). Cross-classification by tertiles produced a high level of exact agreement (mean: 71 %, range: 65–75 %), and weighted κ values were moderate to good (range: 0·54–0·71). Although mean differences (e-DIA–recall) were small (range: –13 to 23 g), limits of agreement (LOA) were relatively large (e.g. for vegetables, mean difference: –4 g, LOA: –159 to 151 g). The Bland–Altman plots showed robust agreement, with minimum bias. This analysis supports the use of e-DIA as an alternative to the repeated 24-h recall method for ranking individuals’ food group intake.

Copyright

Corresponding author

* Corresponding author: Dr A. M. Rangan, fax +612 9351 6022, email anna.rangan@sydney.edu.au

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1. Sharp, D & Allman-Farinelli, M (2014) Feasibility and validity of mobile phones to assess dietary intake. Nutrition 30, 12571266.
2. Rangan, A, O’Connor, S, Giannelli, V, et al. (2015) Electronic Dietary Intake Assessment (e-DIA): comparison of a mobile phone digital entry app for dietary data collection with 24-hour dietary recalls. JMIR Mhealth Uhealth 3, e98.
3. Jacobs, DR Jr & Tapsell, LC (2007) Food, not nutrients, is the fundamental unit in nutrition. Nutr Rev 65, 439450.
4. Kant, AK (2004) Dietary patterns and health outcomes. J Am Diet Assoc 104, 615635.
5. Australian Bureau of Statistics (2010) Australian Health Survey Food Model Booklet. Canberra: Australian Bureau of Statistics.
6. Food Standards Australia New Zealand (2007) AUSNUT 2007 – Australian Food and Nutrient Database. Canberra: Food Standards Australia New Zealand.
7. Moshfegh, A, Borrud, L, Perloff, B, et al. (1999) Improved method for the 24-hour dietary recall for use in national surveys. FASEB J 13, A603.
8. Moshfegh, AJ, Rhodes, DG, Baer, DJ, et al. (2008) The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr 88, 324332.
9. Conway, JM, Ingwersen, LA & Moshfegh, AJ (2004) Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc 104, 595603.
10. Blanton, C, Moshfegh, A, Baer, D, et al. (2006) The USDA automated multiple-pass method accurately estimates group total energy and nutrient intake. J Nutr 136, 25942599.
11. Xyris Software (Australia) Pty Ltd (2012) FoodWorks Professional Edition 7. Kenmore Hills: Xyris Software (Australia) Pty Ltd.
12. National Health and Medical Research Council (2014) Eat for Health website, https://www.eatforhealth.gov.au/food-essentials (accessed April 2016).
13. Food Standards Australia New Zealand (2007) AUSNUT 2007 Recipe File. Canberra: Food Standards Australia and New Zealand.
14. Altman, D (1990) Practical Statistics for Medical Research, Chapman & Hall/CRC Texts in Statistical Science. London: CRC Press.
15. Bland, J & Altman, D (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8, 26.
16. Lowry, R (2015) VassarStats. Poughkeepsie, NY: Vassar College.
17. Ambrosini, G, O’Sullivan, T, de Klerk, N, et al. (2011) Relative validity of adolescent dietary patterns: comparison of a food frequency questionnaire and 3-day food record. Br J Nutr 105, 625633.
18. Chacko, G, Milani, T, Hanss-Nuss, H, et al. (2004) Development and validation of a semi-quantitative food frequency questionnaire for young adult women in the southwestern United States. Nutr Res 24, 2943.
19. Giovannelli, J, Dallongeville, J, Wagner, A, et al. (2014) Validation of a short, qualitative food frequency questionnaire in French adults participating in the MONA LISA-NUT study 2005–2007. J Am Diet Assoc 114, 552561.
20. Hebden, L, Kostan, E, O’Leary, F, et al. (2013) Validity and reproducibility of a food frequency questionnaire as a measure of recent dietary intake in young adults. PLOS ONE 8, e75156.
21. Maruyama, K, Kokubo, Y, Yamanaka, T, et al. (2015) The reasonable reliability of a self-administered food frequency questionnaire for an urban, Japanese, middle-aged population: the Suita study. Nutr Res 35, 1422.
22. Tayyem, R, Abu-Mweis, S, Bawadi, H, et al. (2014) Validation of a food frequency questionnaire to assess macronutrient and micronutrient intake among Jordanians. J Acad Nutr Diet 114, 10461052.
23. Van Dongen, M, Lentjes, M, Wijckmans, N, et al. (2011) Validation of a food-frequency questionnaire for Flemish and Italian-native subjects in Belgium: the IMMIDIET study. Nutrition 27, 302309.
24. Wong, J, Parnell, W, Black, K, et al. (2012) Reliability and relative validity of a food frequency questionnaire to assess food group intakes in New Zealand adolescents. Nutr J 11, 65.
25. Bell, L, Golley, R & Magarey, A (2014) A short food-group-based dietary questionnaire is reliable and valid for assessing toddlers’ dietary risk in relatively advantaged samples. Br J Nutr 112, 627637.
26. Burrows, T, Collins, K, Watson, J, et al. (2014) Validity of the Australian Recommended Food Score as a diet quality index for pre-schoolers. Nutr J 13, 87.
27. Grafenauer, S, Tapsell, L, Beck, E, et al. (2014) Development and validation of a Food Choices Score for use in weight-loss interventions. Br J Nutr 111, 9.
28. Magarey, A, Golley, R, Spurrier, N, et al. (2009) Reliability and validity of the children’s dietary questionnaire; a new tool to measure children’s dietary patterns. Int J Pediatr Obes 4, 257265.
29. Wong, J, Parnell, W, Howe, A, et al. (2013) Development and validation of a food-based diet quality index for New Zealand adolescents. BMC Publ Health 13, 562.
30. Carter, M, Burley, V, Nykjaer, C, et al. (2013) ‘My Meal Mate’ (MMM): validation of the diet measures captured on a smartphone application to facilitate weight loss. Br J Nutr 109, 539546.
31. Beasley, J, Riley, W, Davis, A, et al. (2008) Evaluation of a PDA-based dietary assessment and intervention program: a randomized controlled trial. J Am Coll Nutr 27, 280286.
32. Beasley, J, Riley, W & Jean-Mary, J (2005) Accuracy of a PDA-based dietary assessment program. Nutrition 21, 672677.
33. Fukuo, W, Yoshiuchi, K, Ohashi, K, et al. (2009) Development of a hand-held personal digital assistant-based food diary with food photographs for Japanese subjects. J Am Diet Assoc 109, 12321236.
34. Matthiessen, T, Steinberg, F & Kaiser, L (2011) Convergent validity of a digital image-based food record to assess food group intake in youth. J Am Diet Assoc 111, 756761.
35. Illner, A, Freisling, H, Boeing, H, et al. (2012) Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int J Epidemiol 41, 11871203.
36. Hawkins, R, Kreuter, M, Resnicow, K, et al. (2008) Understanding tailoring in communicating about health. Health Educ Res 23, 454466.
37. Australian Bureau of Statistics (2013) Australian Social Trends. Hitting the Books: Characteristics of Higher Education Students. Canberra: Australian Bureau of Statistics.
38. Australian Bureau of Statistics (2014) Australian Health Survey: Nutrition First Results – Foods and Nutrients, 2011–2012. Canberra: Australian Bureau of Statistics.

Keywords

Type Description Title
WORD
Supplementary materials

Rangan supplementary material
Table

 Word (90 KB)
90 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed