Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T07:11:30.469Z Has data issue: false hasContentIssue false

Effects of three microbial probiotics on postprandial portoarterial concentration differences of glucose, galactose and amino-nitrogen in the young pig

Published online by Cambridge University Press:  09 March 2007

G. Rychen
Affiliation:
Centre de Recherche en Nutrition Animale, Société Chimique Roche, BP 170, 68305, Saint-Louis Cedex, France
C. SimÕes Nunes
Affiliation:
Centre de Recherche en Nutrition Animale, Société Chimique Roche, BP 170, 68305, Saint-Louis Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Postprandial kinetics of porto-arterial concentration differences of glucose (G), galactose (Gal), L-lactic acid (LA) and amino-N (AN) were studied in the piglet after the ingestion of 107 colony-forming units (cfu) Sporolactobacillus P44 (SP), or 106 cfu Bacillus cereus IP5832 (AC), or 106 cfu of a combination of Lactobacillus acidophilus, L. fermentum and L. brevis (AB)/g feed. Sixteen fistulated piglets (portal vein and brachiocephalic trunk; mean body weight 22 (SD 2) kg) were used. The diet was based on skimmed milk (320 g/kg), barley (300 g/kg), wheat bran (110 g/kg), maize (100 g/kg) and lactose (70 g/kg). The postprandial blood kinetics, four measurements per animal at 1-week intervals, were studied for 6 h after the ingestion of test meals of 400 g basal diet (BD) or this diet supplemented with the bacteria (SP, AC and AB respectively). Areas of porto-arterial concentration differences (APACD) of G, Gal and LA were not influenced by the bacteria supplements. APACD of AN was significantly higher after the ingestion of the SP diet than that estimated for BD.

Type
Microbial probiotics in young pigs
Copyright
Copyright © The Nutrition Society 1995

References

Ayebo, A. D., Angelo, I. A. & Shahani, K. M. (1980) Effect of ingesting Lactobacillus acidophilus milk upon fecal flora and enzyme activity in humans. Milchwissenschaft 35, 7384.Google Scholar
Barrow, P. A., Brooker, P. E., Fuller, R. & Newport, M. J. (1980) The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine. Journal of Applied Bacteriology 48, 147154.CrossRefGoogle Scholar
Belville, C. (1990) Influence du bacille sporulé P44 sur la digestibilité du lactose chez les rats gnotoxéniques (Influence of sporulated Bacillus P44 on lactose digestibility in gnotoxenic rats). In Ménoire Ingénieur Université Aix-Marseille I. Aix: University of Aix.Google Scholar
Besnier, M. O., Bourlioux, P., Fourniat, J., Ducluzeau, R. & Aumaître, A. (1983) Influence de l′ingestion de yogourt sur I'activité lactasique intestinale chez des souris axéniques ou holoxéniques (Influence of yoghurt ingestion on axenic and holoxenic mice intestinal lactase activity). Annales de Microbiologie 134, 219230.Google Scholar
Fuller, R. (1992) History and development of probiotics. In Probiotics- The Scientific Basis, pp. 17 [Fuller, R., editor]. London: Chapman & Hall.CrossRefGoogle Scholar
Garvie, E. I., Cole, C. B., Fuller, R. & Hewitt, D. (1984) The effect of yoghurt on some components of the gut microflora and on the metabolism of lactose in the rat. Journal of Applied Bacteriology 56, 237245.CrossRefGoogle Scholar
Goldin, B. R., Swenson, L., Dwyer, J., Sexton, M. & Gorbach, S. L. (1980) Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. Journal of the National Cancer Institute 64, 255261.CrossRefGoogle ScholarPubMed
Hill, I. R., Kenworthy, R. & Porter, P. (1970) Studies of the effect of dietary lactobacilli on intestinal and urinary amines in pigs in relation to weaning and post-weaning diarrhoea. Research in Veterinary Science 2, 320326.CrossRefGoogle Scholar
Kidder, D. E. & Manners, M. (1978) Digestion in the Pig. Bristol: Scientechnica.Google Scholar
Kim, H. S. & Gilliland, S. E. (1983) Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. Journal of Dairy Science 66, 959966.CrossRefGoogle ScholarPubMed
Kolars, J. C., Levitt, M. D., Aouji, M. & Savaiano, D. A. (1984) Yogurt, an autodigesting source of lactose. New England Journal of Medicine 5, 13.CrossRefGoogle Scholar
Marteau, P., Flourie, B., Pochart, P., Chastang, C., Desjeux, J. F. & Rambaud, J. C. (1990) Effect of the microbial lactase (EC 3·2·1·23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. British Journal of Nutrition 64, 7179.CrossRefGoogle Scholar
Muralidhara, K. S., Sheggeby, G. G., Elliker, P. R., England, D. C. & Sandine, W. E. (1977) Effect of feeding lactobacilli on the coliform and lactobacillus flora of intestinal tissue and feces from piglets. Journal of Food Protection 40, 288295.CrossRefGoogle ScholarPubMed
Nguyen, T. H., Duperray, J., Eckenfelder, B., Lecamp, B., Lefrançois, S., Levesque, A., Nebout, J. M., Ridremont, B., Salle, F. & Sergheraert, R. (1988) Quelques probiotiques facteurs de croissance (Some probiotic growth factors). Revue & Alimentation Animale 3, 3137.Google Scholar
Palmer, D. W. & Peters, T. (1969) Automated determination of free amino groups in serum and plasma using 2,4,6-trinitrobenzene sulfonate. Clinical Chemistry 15, 891901.CrossRefGoogle ScholarPubMed
Pusztai, A., Grant, G., King, T. P. & Clarke, E. M. W. (1990) Chemical probiosis. In Recent Advances in Animal Nutrition, pp. 4760 [Haresign, w. and Cole, D.J. A., editors]. London: Butterworths.CrossRefGoogle Scholar
Ratcliffe, B., Cole, C. B., Fuller, R. & Newport, M. J. (1986) The effect of yogurt and milk fermented with a porcine intestinal strain of Lactobacillus reuteri on the performance and gastrointestinal flora of pigs weaned at two days of age. Food Microbiology 3, 203211.CrossRefGoogle Scholar
Rérat, A, Nunes, C. Simões, Vaissade, P. & Roger, L. (1987) Comparison de deux techniques d'estimation (ninhydrine vs. TNBS) de l'azote des acides aminés circulants appliquées á I'étude de I'absorption intestinale de solutions d'acides amines libres ou de petits peptides (Comparison of two techniques (ninhydrin vs. TNBS) for the estimation of amino-nitrogen from blood amino acids applied to the study of intestinal absorption of free amino acids or of small peptides). Reproduction Nutrition Développement 27, 955966.CrossRefGoogle Scholar
Rychen, G. & Nunes, C. Simões (1993) Effects of a microbial probiotic (Sporoluctobucillus P44) on postprandial porto-arterial concentrations differences of glucose, galactose and amino-nitrogen in the growing pig. Reproduction, Nutrition, Development 33, 531539.CrossRefGoogle Scholar
Schaafsma, G., Deriks, P., Dekker, P. R. & Waard, H. (1988) Nutritional aspects of yogurt. Microbial lactase activity and digestion of lactose. Netherlands Milk and Dairy Journal 42, 121134.Google Scholar
Nunes, C. Simões & Malmlöf, K. (1992 a) Effects of guar gum and cellulose on glucose absorption, hormonal release and hepatic metabolism in the pig. British Journal of Nutrition 68, 693700.CrossRefGoogle ScholarPubMed
Nunes, C. Simões & Malmlöf, K. (1992 b) Interorgan movements of amino acid in the pig: effects of dietary fibres. Amino Acids 2, 7786.CrossRefGoogle Scholar
Nunes, C. Simões, Rérat, A., Galibois, I., Vaugelade, P. & Vaissade, P. (1989) Hepatic and gut balances of glucose, amino-nitrogen, ammonia and urea in the pig after ingestion of casein or rapeseed proteins. Nutrition Reports International 40, 901907.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967) Statistical Methods. Ames: Iowa State University Press.Google Scholar
Vanbelle, M., Teller, E. & Focant, M. (1990) Probiotics in animal nutrition: a review. Archives of Animal Nutrition 7. 543567.Google Scholar