Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T18:46:18.438Z Has data issue: false hasContentIssue false

Effects of selenium supplementation on glycaemic control markers in healthy rodents: a systematic review and meta-analysis

Published online by Cambridge University Press:  21 October 2022

Rannapaula Lawrynhuk Urbano Ferreira
Affiliation:
Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil
Ângela Waleska Freire de Sousa
Affiliation:
Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil
Antonio Gouveia Oliveira
Affiliation:
Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil
Adriana Augusto de Rezende
Affiliation:
Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, RN, Brazil
Ricardo Ney Cobucci
Affiliation:
Graduate Program of Biotechnology and Medical School, Universidade Potiguar (UnP), Anima, Natal, RN, Brazil Graduate Program in Sciences Applied to Women’s Health, Maternidade Escola Januário Cicco (MEJC/EBSERH), Federal University of Rio Grande do Norte, Natal, RN, Brazil
Lucia Fatima Campos Pedrosa*
Affiliation:
Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
*
*Corresponding author: Dr L. F. C. Pedrosa, email lucia.pedrosa@ufrn.br

Abstract

Overexposure to Se is detrimental to glucose metabolism, mainly because of its pro-oxidant effects and the overexpression of selenoproteins. This systematic review evaluated the effects of Se supplementation on glycaemic control in healthy rodents. The methodology followed the PRISMA. We searched the databases for articles published up to May 2022. The risk of bias and the methodological quality were assessed using the SYRCLE and CAMARADES. The results are presented as meta-analytic estimates of the overall standardised mean difference (SMD) and 95 % CI. Of the 2359 records retrieved, thirteen studies were included, of which eleven used sodium selenite and two used zero-valent Se nanoparticles as supplement. Nine studies were included in the meta-analysis. Generally, the risk of bias was high, and 23·1 % of the studies were of high quality. Supplementation with sodium selenite significantly increased fasting blood glucose (SMD = 2·57 (95 % CI (1·07, 4·07)), I2 = 93·5 % (P = 0·001). Subgroup analyses showed effect size was larger for interventions lasting between 21 and 28 d (SMD = 25·74 (95 % CI (2·29, 9·18)), I2 = 96·1 % (P = 0·001)) and for a dose of 864·7 μg/kg/d of sodium selenite (SMD = 10·26 (95 % CI (2·42, 18·11), I2 = 97·1 % (P = 0·010)). However, it did not affect glutathione peroxidase activity (SMD = 0·60 (95 % CI (-0·71, 1·91)), I2 = 83·2 % (P = 0·37)). The current analysis demonstrated the adverse effects of sodium selenite supplementation on glycaemic control in healthy rodents.

Type
Systematic Review and Meta-Analysis
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dubey, P, Thakur, V & Chattopadhyay, M (2020) Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 12, 1864.CrossRefGoogle ScholarPubMed
Vinceti, M, Filippini, T, Jablonska, E, et al. (2022) Safety of selenium exposure and limitations of selenoprotein maximization: molecular and epidemiologic perspectives. Environ Res 211, 113092.CrossRefGoogle ScholarPubMed
Stapleton, SR (2000) Selenium: an insulin-mimetic. Cell Mol Life Sci 57, 18741879.CrossRefGoogle ScholarPubMed
Wang, C, Yang, S, Zhang, N, et al. (2014) Long-term supranutritional supplementation with selenate decreases hyperglycemia and promotes fatty liver degeneration by inducing hyperinsulinemia in diabetic db/db mice. PLOS ONE 9, 111.Google ScholarPubMed
Chen, H, Qiu, Q, Dou, L, et al. (2015) Regulation of hepatic carbohydrate metabolism by Selenium during diabetes. Chem Biol Interact 232, 16.CrossRefGoogle ScholarPubMed
Seale, LA, Hashimoto, AC, Kurokawa, S, et al. (2012) Disruption of the selenocysteine lyase-mediated selenium recycling pathway leads to metabolic syndrome in mice. Mol Cell Biol 32, 41414154.CrossRefGoogle ScholarPubMed
Ju, W, Li, X, Li, Z, et al. (2017) The effect of selenium supplementation on coronary heart disease: a systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol 44, 816.CrossRefGoogle ScholarPubMed
Jablonska, E, Reszka, E, Gromadzinska, J, et al. (2016) The effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients 8, 772.CrossRefGoogle ScholarPubMed
Stranges, S, Marshall, JR, Natarajan, R, et al. (2007) Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med 147, 217223.CrossRefGoogle ScholarPubMed
Labunskyy, V, Lee, B, Handy, D, et al. (2011) Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal 14, 23272336.CrossRefGoogle ScholarPubMed
Zhou, J & Huang, KLX (2013) Selenium and diabetes – evidence from animal studies. Free Radic Biol Med 65, 15481556.CrossRefGoogle ScholarPubMed
Misu, H, Takamura, T, Takayama, H, et al. (2010) A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 12, 483495.CrossRefGoogle ScholarPubMed
Mita, Y, Nakayama, K, Inari, S, et al. (2017) Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 8, 1658.CrossRefGoogle ScholarPubMed
Saito, Y (2020) Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J Clin Biochem Nutr 66, 17.CrossRefGoogle Scholar
Kohler, LN, Foote, J, Kelley, CP, et al. (2018) Selenium and type 2 diabetes: systematic review. Nutrients 10, 1924.CrossRefGoogle ScholarPubMed
Calder, PC, Carr, AC, Gombart, AF, et al. (2020) Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients 12, 1181.CrossRefGoogle ScholarPubMed
Moghaddam, A, Heller, RA, Sun, Q, et al. (2020) Selenium deficiency is associated with mortality risk from COVID-19. Nutrients 12, 2098.CrossRefGoogle ScholarPubMed
Aldosary, BM, Sutter, ME, Schwartz, M, et al. (2012) Case series of selenium toxicity from a nutritional supplement. Clin Toxicol 50, 5764.CrossRefGoogle ScholarPubMed
MacFarquhar, JK, Broussard, DL, Melstrom, P, et al. (2011) Acute selenium toxicity associated with a dietary supplement. Arch Intern Med 170, 256261.CrossRefGoogle Scholar
Ashar, BH (2010) The dietary supplement health and education act: time for a reassessment: comment on “acute selenium toxicity associated with a dietary supplement.” Arch Intern Med 170, 261263.CrossRefGoogle Scholar
Sociedade Brasileira de Diabetes (2019) Diretrizes da Sociedade Brasileira de Diabetes: 2019–2020. São Paulo: Clannad.Google Scholar
Page, MJ, McKenzie, JE, Bossuyt, PM, et al. (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18, e1003583.CrossRefGoogle ScholarPubMed
Ferreira, RLU, de Sousa, AWF, Oliveira, AG, et al. (2022) Effects of selenium supplementation on glycemic control markers in healthy rodents: a systematic review protocol. PLOS ONE 17, e0261985.CrossRefGoogle ScholarPubMed
Hooijmans, CR, Rovers, MM, de Vries, RB, et al. (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14, 43.CrossRefGoogle ScholarPubMed
Macleod, MR, O’Collins, T, Howells, DW, et al. (2004) Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 35, 12031208.CrossRefGoogle ScholarPubMed
Egger, M, Davey Smith, G, Schneider, M, et al. (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629634.CrossRefGoogle ScholarPubMed
Sterne, J, Sutton, A, Ioannidis, J, et al. (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised. BMJ 342, 18.Google Scholar
Zou, C, Qiu, Q, Chen, H, et al. (2016) Hepatoprotective effects of selenium during diabetes in rats. Hum Exp Toxicol 35, 114123.CrossRefGoogle ScholarPubMed
Ayaz, M, Ozdemir, S, Ugur, M, et al. (2004) Effects of selenium on altered mechanical and electrical cardiac activities of diabetic rat. Arch Biochem Biophys 426, 8390.CrossRefGoogle ScholarPubMed
Ayaz, M & Turan, B (2006) Selenium prevents diabetes-induced alterations in [Zn2+] i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol 290, 10711080.CrossRefGoogle ScholarPubMed
Can, B, Ulusu, NN, Kilinç, K, et al. (2005) Selenium treatment protects diabetes-induced biochemical and ultrastructural alterations in liver tissue. Biol Trace Elem Res 105, 135150.CrossRefGoogle ScholarPubMed
Ulusu, NN & Turan, B (2005) Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol Trace Elem Res 103, 207215.CrossRefGoogle ScholarPubMed
Mukherjee, B, Anbazhagan, S, Roy, A, et al. (1998) Novel implications of the potential role of selenium on antioxidant status in streptozotocin-induced diabetic mice. Biomed Pharmacother 52, 8995.CrossRefGoogle ScholarPubMed
Kiełczykowska, M, Kocot, J, Kurzepa, J, et al. (2014) Could selenium administration alleviate the disturbances of blood parameters caused by lithium administration in rats? Biol Trace Elem Res 158, 359364.CrossRefGoogle ScholarPubMed
Pillai, SS, Sugathan, JK & Indira, M (2012) Selenium downregulates RAGE and NFκB expression in diabetic rats. Biol Trace Elem Res 149, 7177.CrossRefGoogle ScholarPubMed
Dhanya, BL, Swathy, RP & Indira, M (2014) Selenium downregulates oxidative stress-induced activation of leukotriene pathway in experimental rats with diabetic cardiac hypertrophy. Biol Trace Elem Res 161, 107115.CrossRefGoogle ScholarPubMed
Ayaz, M, Celik, HA, Aydin, HH, et al. (2006) Sodium selenite protects against diabetes-induced alterations in the antioxidant defense system of the liver. Diabetes Metab Res Rev 22, 295299.CrossRefGoogle ScholarPubMed
Baş, H & Kalender, Y (2016) Nephrotoxic effects of lead nitrate exposure in diabetic and nondiabetic rats: involvement of oxidative stress and the protective role of sodium selenite. Environ Toxicol 31, 12291240.CrossRefGoogle ScholarPubMed
Sheng, XQ, Huang, KX & Xu, HB (2004) New experimental observation on the relationship of selenium and diabetes mellitus. Biol Trace Elem Res 99, 241253.CrossRefGoogle ScholarPubMed
Al-Quraishy, S, Dkhil, MA & Abdel Moneim, AE (2015) Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomed 10, 67416756.Google ScholarPubMed
Reeves, PG, Nielsen, FH & Fahey, GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 121, 19391951.CrossRefGoogle Scholar
El-Borady, OM, Othman, MS, Atallah, HH, et al. (2020) Hypoglycemic potential of selenium nanoparticles capped with polyvinyl-pyrrolidone in streptozotocin-induced experimental diabetes in rats. Heliyon 6, e04045.CrossRefGoogle ScholarPubMed
ADA (2020) Glycemic targets: standards of medical care in diabetes – 2020. Diabetes Care 43, Suppl. 1, S66S76.CrossRefGoogle Scholar
Constantinescu-Aruxandei, D, Frîncu, RM, Capră, L, et al. (2018) Selenium analysis and speciation in dietary supplements based on next-generation selenium ingredients. Nutrients 10, 1466.CrossRefGoogle ScholarPubMed
Kumar, A & Prasad, KS (2021) Role of nano-selenium in health and environment. J Biotechnol 325, 152163.CrossRefGoogle ScholarPubMed
Zeng, X, Zhang, X, Fan, B, et al. (2020) Pharmacokinetics of sodium selenite in rat plasma and tissues after intragastric administration. Biol Trace Elem Res 196, 459501.CrossRefGoogle ScholarPubMed
Wang, Y, Lin, M, Gao, X, et al. (2017) High dietary selenium intake is associated with less insulin resistance in the Newfoundland population. PLOS ONE 12, e0174149.CrossRefGoogle ScholarPubMed
Rayman, MP & Stranges, S (2013) Epidemiology of selenium and type 2 diabetes: can we make sense of it? Free Radic Biol Med 65, 15571564.CrossRefGoogle Scholar
Mahadev, K, Zilbering, A, Zhu, L, et al. (2001) Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 276, 2193821942.CrossRefGoogle ScholarPubMed
Goldstein, BJ, Mahadev, K & Wu, X (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54, 311321.CrossRefGoogle ScholarPubMed
Brigelius-Flohé, R & Flohé, L (2020) Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal 33, 498516.CrossRefGoogle ScholarPubMed
McClung, JP, Roneker, CA, Mu, W, et al. (2004) Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci USA 101, 88528857.CrossRefGoogle ScholarPubMed
Steinbrenner, H, Duntas, LH & Rayman, MP (2022) The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol 50, 102236.CrossRefGoogle ScholarPubMed
Kilkenny, C, Parsons, N, Kadyszewski, E, et al. (2009) Survey of the quality of experimental design, statistical analysis and reporting of research using animals. PLOS ONE 4, e7824.CrossRefGoogle Scholar
Henderson, V, Kimmelman, J, Fergusson, D, et al. (2013) Threats to validity in the design and conduct of preclinical efficacy studies: a systematic review of guidelines for in vivo animal experiments. PLOS ONE 10, e1001489.Google ScholarPubMed
Supplementary material: File

Ferreira et al. supplementary material

Tables S1-S3 and Figure S1

Download Ferreira et al. supplementary material(File)
File 162.5 KB