Skip to main content Accessibility help

Effects of maternal diets on preterm birth and low birth weight: a systematic review

  • Dereje G. Gete (a1), Michael Waller (a1) and Gita D. Mishra (a1)


Current evidence indicates that maternal diets before and during pregnancy could influence rates of preterm birth, low birth weight (LBW) and small for gestational age (SGA) births. However, findings have been inconsistent. This review summarised evidence concerning the effects of maternal diets before and during pregnancy on preterm birth, LBW and SGA. Systematic electronic database searches were carried out using PubMed, Embase, Scopus and Cochrane library using the preferred reporting items for systematic reviews and meta-analyses guidelines. The review included forty eligible articles, comprising mostly of prospective cohort studies, with five randomised controlled trials. The dietary patterns during pregnancy associated with a lower risk of preterm birth were commonly characterised by high consumption of vegetables, fruits, whole grains, fish and dairy products. Those associated with a lower risk of SGA also had similar characteristics, including high consumption of vegetables, fruits, legumes, seafood/fish and milk products. Results from a limited number of studies suggested there was a beneficial effect on the risk of preterm birth of pre-pregnancy diet quality characterised by a high intake of fruits and proteins and less intake of added sugars, saturated fats and fast foods. The evidence was mixed for the relationship between maternal dietary patterns during pregnancy and LBW. These findings indicate that better maternal diet quality during pregnancy, characterised by a high intake of vegetables, fruits, whole grains, dairy products and protein diets, may have a synergistic effect on reducing the risk of preterm birth and SGA.


Corresponding author

*Corresponding author: Dereje G. Gete, email


Hide All
1. World Health Organization (2018) Maternal, newborn, child and adolescent health. http://wwwwhoint/maternal_child_adolescent/newborns/prematurity/en/ (accessed July 2018).
2. Hughes, MM, Black, RE, Katz, J, et al. (2017) 2500-g low birth weight cutoff: history and implications for future research and policy. Matern Child Health J 21, 283289.
3. World Health Organization (2019) Too many babies are born too small. WHO. (accessed July 2019).
4. Moreira, RS, Magalhães, LC & Alves, CR (2014) Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review. Jornal de Pediatria 90, 119134.
5. Schieve, LA, Tian, LH, Rankin, K, et al. (2016) Population impact of preterm birth and low birth weight on developmental disabilities in US children. Ann Epidemiol 26, 267274.
6. Marret, S, Ancel, P-Y, Marpeau, L, et al. (2007) Neonatal and 5-year outcomes after birth at 30–34 weeks of gestation. Obstet Gynecol 110, 7280.
7. Rogers, LK & Velten, M (2011) Maternal inflammation, growth retardation, and preterm birth: insights into adult cardiovascular disease. Life Sci 89, 417421.
8. Bonamy, A-KE, Bendito, A, Martin, H, et al. (2005) Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr Res 58, 845.
9. Kensara, OA, Wootton, SA, Phillips, DI, Patel, M, Jackson, AA, Elia, M (2005) Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr 82, 980987.
10. Wei, J-N, Sung, F-C, Li, C-Y, et al. (2003) Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan. Diabetes Care 26, 343348.
11. Curhan, GC, Chertow, GM, Willett, WC, et al. (1996) Birth weight and adult hypertension and obesity in women. Circulation 94, 13101315.
12. Luyckx, VA & Brenner, BM (2005) Low birth weight, nephron number, and kidney disease. Kidney Int 68, S68S77.
13. Ramakrishnan, U, Grant, F, Goldenberg, T, et al. (2012) Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: a systematic review. Paediatr Perinat Epidemiol 26, 285301.
14. National Reasearch Council (1989) Diet and Health: Implications for Reducing Chronic Disease Risk. Washington, DC: National Academies Press.
15. Lee, C, Reed, D, MacLean, C, et al. (1988) Dietary potassium and stroke. N Engl J Med 318, 995.
16. Sacks, FM, Obarzanek, E, Windhauser, MM, et al. (1995) Rationale and design of the Dietary Approaches to Stop Hypertension trial (DASH): a multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann Epidemiol 5, 108118.
17. Englund-Ogge, L, Brantsaeter, AL, Sengpiel, V, et al. (2014) Maternal dietary patterns and preterm delivery: results from large prospective cohort study. BMJ 348, g1446.
18. Mikkelsen, TB, Osterdal, ML, Knudsen, VK, et al. (2008) Association between a Mediterranean-type diet and risk of preterm birth among Danish women: a prospective cohort study. Acta Obstet Gynecol Scand 87, 325330.
19. Chatzi, L, Mendez, M, Garcia, R, et al. (2012) Mediterranean diet adherence during pregnancy and fetal growth: INMA (Spain) and RHEA (Greece) mother–child cohort studies. Br J Nutr 107, 135145.
20. Martin, CL, Sotres-Alvarez, D & Siega-Riz, AM (2015) Maternal dietary patterns during the second trimester are associated with preterm birth. J Nutr 145, 18571864.
21. Rasmussen, MA, Maslova, E, Halldorsson, TI, et al. (2014) Characterization of dietary patterns in the Danish national birth cohort in relation to preterm birth. PLOS ONE 9, e93644.
22. Hajianfar, H, Esmaillzadeh, A, Feizi, A, et al. (2018) Major maternal dietary patterns during early pregnancy and their association with neonatal anthropometric measurement. Biomed Res Int 2018, 4692193.
23. Knudsen, VK, Orozova-Bekkevold, IM, Mikkelsen, TB, et al. (2008) Major dietary patterns in pregnancy and fetal growth. Eur J Clin Nutr 62, 463470.
24. Shin, AC, MohanKumar, SM, Sirivelu, MP, et al. (2010) Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats. Int J Obes 34, 1218.
25. Jeffery, I & O’Toole, P (2013) Diet-microbiota interactions and their implications for healthy living. Nutrients 5, 234252.
26. Chen, X, Zhao, D, Mao, X, et al. (2016) Maternal dietary patterns and pregnancy outcome. Nutrients 8, 351.
27. Kjøllesdal, MK & Holmboe-Ottesen, G (2014) Dietary patterns and birth weight—a review. AIMS Public Health 1, 211225.
28. Liberati, A, Altman, DG, Tetzlaff, J, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6, e1000100.
29. Greenhalgh, T & Peacock, R (2005) Effectiveness and efficiency of search methods in systematic reviews of complex evidence: audit of primary sources. BMJ 331, 10641065.
30. Schlosser, RW, Wendt, O, Bhavnani, S, et al. (2006) Use of information‐seeking strategies for developing systematic reviews and engaging in evidence‐based practice: the application of traditional and comprehensive Pearl Growing. A review. Int J Lang Commun Disord 41, 567582.
31. Dietary Guidelines Advisory Committee (2015). Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Washington, DC: US Department of Agriculture, Agricultural Research Service.
32. Bouwland-Both, MI, Steegers-Theunissen, RP, Vujkovic, M, et al. (2013) A periconceptional energy-rich dietary pattern is associated with early fetal growth: the Generation R study. BJOG 120, 435445.
33. Brantsaeter, AL, Birgisdottir, BE, Meltzer, HM, et al. (2012) Maternal seafood consumption and infant birth weight, length and head circumference in the Norwegian Mother and Child Cohort Study. Br J Nutr 107, 436444.
34. Chia, AR, de Seymour, JV, Colega, M, et al. (2016) A vegetable, fruit, and white rice dietary pattern during pregnancy is associated with a lower risk of preterm birth and larger birth size in a multiethnic Asian cohort: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. Am J Clin Nutr 104, 14161423.
35. Emond, JA, Karagas, MR, Baker, ER, et al. (2018) Better diet quality during pregnancy is associated with a reduced likelihood of an infant born small for gestational age: an analysis of the prospective New Hampshire birth cohort study. J Nutr 148, 2230.
36. Englund-Ogge, L, Birgisdottir, BE, Sengpiel, V, et al. (2017) Meal frequency patterns and glycemic properties of maternal diet in relation to preterm delivery: results from a large prospective cohort study. PLOS ONE 12, e0172896.
37. Grieger, JA, Grzeskowiak, LE & Clifton, VL (2014) Preconception dietary patterns in human pregnancies are associated with preterm delivery. J Nutr 144, 10751080.
38. Halldorsson Th, I, Meltzer, HM, Thorsdottir, I, et al. (2007) Is high consumption of fatty fish during pregnancy a risk factor for fetal growth retardation? A study of 44,824 Danish pregnant women. Am J Epidemiol 166, 687696.
39. Haugen, M, Meltzer, HM, Brantsaeter, AL, et al. (2008) Mediterranean-type diet and risk of preterm birth among women in the Norwegian Mother and Child Cohort Study (MoBa): a prospective cohort study. Acta Obstet Gynecol Scand 87, 319324.
40. Heppe, DH, van Dam, RM, Willemsen, SP, et al. (2011) Maternal milk consumption, fetal growth, and the risks of neonatal complications: the Generation R Study. Am J Clin Nutr 94, 501509.
41. Heppe, DH, Steegers, EA, Timmermans, S, et al. (2011) Maternal fish consumption, fetal growth and the risks of neonatal complications: the Generation R Study. Br J Nutr 105, 938949.
42. Hillesund, ER, Øverby, NC, Engel, SM, et al. (2014) Lower risk of preeclampsia and preterm delivery with adherence to the New Nordic Diet during pregnancy – a study performed in the Norwegian Mother and Child Cohort Study (MoBa). Eur J Epidemiol 29, 753.
43. Knudsen, VK, Heitmann, BL, Halldorsson, TI, et al. (2013) Maternal dietary glycaemic load during pregnancy and gestational weight gain, birth weight and postpartum weight retention: a study within the Danish National Birth Cohort. Br J Nutr 109, 14711478.
44. Lu, M-S, Chen, Q-Z, He, J-R, et al. (2016) Maternal dietary patterns and fetal growth: a large prospective cohort study in China. Nutrients 8, 257.
45. Lu, MS, He, JR, Chen, Q, et al. (2018) Maternal dietary patterns during pregnancy and preterm delivery: a large prospective cohort study in China. Nutr J 17, 71.
46. Mendez, MA, Plana, E, Guxens, M, et al. (2010) Seafood consumption in pregnancy and infant size at birth: results from a prospective Spanish cohort. J Epidemiol Community Health 64, 216222.
47. Mitchell, EA, Robinson, E, Clark, PM, et al. (2004) Maternal nutritional risk factors for small for gestational age babies in a developed country: a case–control study. Arch Dis Child Fetal Neonatal Ed 89, F431F435.
48. Myhre, R, Brantsaeter, AL, Myking, S, et al. (2011) Intake of probiotic food and risk of spontaneous preterm delivery. Am J Clin Nutr 93, 151157.
49. Myhre, R, Brantsaeter, AL, Myking, S, et al. (2013) Intakes of garlic and dried fruits are associated with lower risk of spontaneous preterm delivery. J Nutr 143, 11001108.
50. Muthayya, S, Dwarkanath, P, Thomas, T, et al. (2009) The effect of fish and omega-3 LCPUFA intake on low birth weight in Indian pregnant women. Eur J Clin Nutr 63, 340346.
51. Okubo, H, Miyake, Y, Sasaki, S, et al. (2012) Maternal dietary patterns in pregnancy and fetal growth in Japan: the Osaka Maternal and Child Health Study. Br J Nutr 107, 15261533.
52. Olmedo-Requena, R, Amezcua-Prieto, C, Luna-Del-Castillo, JdeD, et al. (2016) Association between low dairy intake during pregnancy and risk of small-for-gestational-age infants. Matern Child Health J 20, 12961304.
53. Olsen, SF & Secher, NJ (2002) Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. BMJ 324, 447.
54. Olsen, SF, Halldorsson, TI, Willett, WC, et al. (2007) Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort study. Am J Clin Nutr 86, 11041110.
55. Poon, AK, Yeung, E, Boghossian, N, et al. (2013) Maternal dietary patterns during third trimester in association with birthweight characteristics and early infant growth. Scientifica 2013, 7.
56. Ricci, E, Chiaffarino, F, Cipriani, S, et al. (2010) Diet in pregnancy and risk of small for gestational age birth: results from a retrospective case–control study in Italy. Matern Child Nutr 6, 297305.
57. Saunders, L, Guldner, L, Costet, N, et al. (2014) Effect of a Mediterranean diet during pregnancy on fetal growth and preterm delivery: results from a French Caribbean Mother-Child Cohort Study (TIMOUN). Paediatr Perinat Epidemiol 28, 235244.
58. Thompson, JM, Wall, C, Becroft, DM, et al. (2010) Maternal dietary patterns in pregnancy and the association with small-for-gestational-age infants. Br J Nutr 103, 16651673.
59. Hillesund, ER, Bere, E, Sagedal, LR, et al. (2018) Pre-pregnancy and early pregnancy dietary behavior in relation to maternal and newborn health in the Norwegian Fit for Delivery study – a post hoc observational analysis. Food Nutr Res 62, 1273.
60. Huybregts, L, Roberfroid, D, Lanou, H, et al. (2009) Prenatal food supplementation fortified with multiple micronutrients increases birth length: a randomized controlled trial in rural Burkina Faso. Am J Clin Nutr 90, 15931600.
61. Janmohamed, A, Karakochuk, CD, Boungnasiri, S, et al. (2016) Prenatal supplementation with Corn Soya Blend Plus reduces the risk of maternal anemia in late gestation and lowers the rate of preterm birth but does not significantly improve maternal weight gain and birth anthropometric measurements in rural Cambodian women: a randomized trial. Am J Clin Nutr 103, 559566.
62. Khoury, J, Henriksen, T, Christophersen, B, et al. (2005) Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: a randomized clinical trial. Am J Obstet Gynecol 193, 12921301.
63. Potdar, RD, Sahariah, SA, Gandhi, M, et al. (2014) Improving women’s diet quality preconceptionally and during gestation: effects on birth weight and prevalence of low birth weight – a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project). Am J Clin Nutr 100, 12571268.
64. Wells, GA, Shea, B, O’Connell, D, Peterson, J, et al. (2018) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. (accessed July 2018).
65. Higgins, JPT, Altman, DG & Sterne, JAC (2011) Chapter 8: Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [Higgins, JPT and Green, S, editors]. The Cochrane Collaboration. Chichester: John Wiley & Sons, Ltd. (accessed March 2011).
66. Akbari, Z, Mansourian, M & Kelishadi, R (2015) Relationship of the intake of different food groups by pregnant mothers with the birth weight and gestational age: Need for public and individual educational programs. J Educ Health Promot 4, 23.
67. Naghavi, S, Mahdavi, SB, Moradi, B, et al. (2017) Association of dietary patterns during pregnancy and cord blood nitric oxide level with birth weight of newborns. Int J Pediatr 5, 44894501.
68. Akbaraly, TN, Shipley, MJ, Ferrie, JE, et al. (2015) Long-term adherence to healthy dietary guidelines and chronic inflammation in the prospective Whitehall II study. Am J Med 128, 152160. e154.
69. Kim, Y-J, Hong, Y-C, Lee, K-H, et al. (2005) Oxidative stress in pregnant women and birth weight reduction. Reprod Toxicol 19, 487492.
70. Sen, S, Rifas-Shiman, SL, Shivappa, N, et al. (2015) Dietary inflammatory potential during pregnancy is associated with lower fetal growth and breastfeeding failure: results from project viva–3. J Nutr 146, 728736.
71. Leventakou, V, Roumeliotaki, T, Martinez, D, et al. (2013) Fish intake during pregnancy, fetal growth, and gestational length in 19 European birth cohort studies. Am J Clin Nutr 99, 506516.
72. Olsen, S, Sørensen, TA, Secher, N, et al. (1986) Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation. Lancet 328, 367369.
73. Olsen, SF, Olsen, J & Frische, G (1990) Does fish consumption during pregnancy increase fetal growth? A study of the size of the newborn, placental weight and gestational age in relation to fish consumption during pregnancy. Int J Epidemiol 19, 971977.
74. Philibert, A, Vanier, C, Abdelouahab, N, et al. (2006) Fish intake and serum fatty acid profiles from freshwater fish. Am J Clin Nutr 84, 12991307.
75. Yeganegi, M, Watson, CS, Martins, A, et al. (2009) Effect of Lactobacillus rhamnosus GR-1 supernatant and fetal sex on lipopolysaccharide-induced cytokine and prostaglandin-regulating enzymes in human placental trophoblast cells: implications for treatment of bacterial vaginosis and prevention of preterm labor. Am J Obstet Gynecol 200, 532. e531–532. e538.
76. Hillier, SL, Nugent, RP, Eschenbach, DA, et al. (1995) Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N Engl J Med 333, 17371742.
77. Donders, G, Van Calsteren, K, Bellen, G et al. (2009) Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. BJOG 116, 13151324.
78. Mannion, CA, Gray-Donald, K & Koski, KG (2006) Association of low intake of milk and vitamin D during pregnancy with decreased birth weight. CMAJ 174, 12731277.
79. Stephenson, J, Heslehurst, N, Hall, J, et al. (2018) Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet 391, 18301841.
80. De‐Regil, LM, Peña‐Rosas, JP, Fernández‐Gaxiola, AC, et al. (2015) Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst Rev, issue 12, CD007950.
81. Mastroiacovo, P & Leoncini, E (2011) More folic acid, the five questions: why, who, when, how much, and how. Biofactors 37, 272279.
82. Hodgetts, V, Morris, R, Francis, A, et al. (2015) Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small‐for‐gestational age neonates: a population study, systematic review and meta‐analysis. BJOG 122, 478490.
83. He, Y, Pan, A, Hu, FB, et al. (2016) Folic acid supplementation, birth defects, and adverse pregnancy outcomes in Chinese women: a population-based mega-cohort study. Lancet 388, S91.
84. Hanson, M, Barker, M, Dodd, JM, et al. (2017) Interventions to prevent maternal obesity before conception, during pregnancy, and post partum. Lancet Diabetes Endocrinol 5, 6576.
85. Moses, RG, Luebcke, M, Davis, WS, et al. (2006) Effect of a low-glycemic-index diet during pregnancy on obstetric outcomes. Am J Clin Nutr 84, 807812.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Gete et al. supplementary material
Tables S1-S5

 Word (39 KB)
39 KB

Effects of maternal diets on preterm birth and low birth weight: a systematic review

  • Dereje G. Gete (a1), Michael Waller (a1) and Gita D. Mishra (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.