Skip to main content Accessibility help

Effects of dietary stachyose levels on caecal skatole concentration, hepatic cytochrome P450 mRNA expressions and enzymatic activities in broilers

  • Hai-Ying Liu (a1), Xin-Yun Zhao (a1), Gui-Qin Yang (a1), Ji-Zhe Liu (a1) and Xin Zhu (a1)...


Effects of dietary supplemental stachyose on caecal skatole concentration, hepatic cytochrome P450 (CYP450, CYP) mRNA expressions and enzymatic activities in broilers were evaluated. Arbor Acre commercial mixed male and female chicks were assigned randomly into six treatments. The positive control (PC) diet was based on maize–soyabean meal, and the negative control (NC) diet was based on maize–non-soyabean meal. The NC diet was then supplemented with 4, 5, 6 and 7 g/kg stachyose to create experimental diets, named S-4, S-5, S-6 and S-7, respectively. Each diet was fed to six replicates of ten birds from days 1 to 49. On day 49, the caecal skatole concentrations in the PC, S-4, S-5, S-6 and S-7 groups were lower than those in the NC group by 42·28, 23·68, 46·09, 15·31 and 45·14 % (P < 0·01), respectively. The lowest pH value was observed in the S-5 group (P < 0·05). The stachyose-fed groups of broilers had higher caecal acetate and propionate levels compared with control groups, and propionate levels in the S-6 and S-7 groups were higher than those in the S-4 and S-5 groups (P < 0·001). The highest CYP3A4 expression was found in the S-7 group (P < 0·05), but this was not different from PC, S-4, S-5 and S-6 treatments. There was no significant difference in CYP450 (1A2, 2D6 and 3A4) enzymatic activities among the groups (P > 0·05). In conclusion, caecal skatole levels can be influenced by dietary stachyose levels, and 5 g/kg of stachyose in the diet was suggested.


Corresponding author

*Corresponding author: Gui-Qin Yang, fax +86-24-88487156, email


Hide All
1.Yang, G, Zhang, P, Liu, H, et al. (2019) Spatial variations in intestinal skatole production and microbial composition in broilers. Anim Sci J 90, 412422.
2.Jensen, RL (2012) Feed interventions and skatole deposition – characterization of a skatole producing bacterium isolated from the gastrointestinal tract of pigs. Master’s Thesis, Copenhagen University.
3.Babol, J, Squires, EJ & Lundström, K (1998) Hepatic metabolism of skatole in pigs by cytochrome P4502E1. J Anim Sci 76, 822828.
4.Babol, J, Squires, EJ & Lundström, K (1998) Relationship between oxidation and conjugation metabolism of skatole in pig liver and concentrations of skatole in fat. J Anim Sci 76, 829838.
5.Diaz, GJ, & Squires, EJ (2000) Metabolism of 3-methylindole by porcine liver microsomes: responsible cytochrome P450 enzymes. Toxicol Sci 55, 284292.
6.Lewis, DFV & Lake, BG (1996) Molecular modeling of CYP1A subfamily members based on an alignment with CYP102: rationalization of CYP1A substrate specificity in terms of active site amino acid residues. Xenobiotica 26, 723753.
7.Rasmussen, MK & Zamaratskaia, G (2014) Regulation of porcine hepatic cytochrome p450 — implication for boar taint. Comput Struct Biotechnol J 11, 106112.
8.Thornton-Manning, RJ, Ruangyuttikarn, W, Gonzalez, JF, et al. (1991) Metabolic activation of the pneumotoxin, 3-methylindole, by vaccinia-expressed cytochrome P450s. Biochem Biophys Res Commun 181, 100107.
9.Thornton-Manning, J, Appleton, ML, Gonzalez, FJ, et al. (1996) Metabolism of 3-methylindole by vaccinia-expressed p450 enzymes: correlation of 3-methyleneindolenine formation and protein-binding. J Pharmacol Exp Ther 276, 2129.
10.Whittington, FM, Nute, GR, Hughes, SI, et al. (2004). Relationships between skatole and androstenone accumulation, and cytochrome P4502E1 expression in Meishan x Large white pigs. Meat Sci 67, 569576.
11.Rasmussen, MK, Zamaratskaia, G & Ekstrand, B (2011) In vivo effect of dried chicory root (Cichorium intybus L.) on xenobiotica metabolising cytochrome P450 enzymes in porcine liver. Toxicol Lett 200, 8891.
12.Lan, Y, Williams, BA, Verstegen, MWA, et al. (2007) Soy oligosaccharides in vitro fermentation characteristics and its effect on caecal microorganisms of young broiler chickens. Anim Feed Sci Technol 133, 286297.
13.Choct, M, Dersjant-Li, Y, McLeish, J, et al. (2010) Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australas J Anim Sci 23, 13861398.
14.Hayakawa, K, Mizutani, J, Wada, K, et al. (1990) Effects of soybean oligosaccharides on human faecal flora. Microb Ecol Health Dis 3, 293303.
15.Furlong, RF (2005) Insights into vertebrate evolution from the chicken genome sequence. Genome Biol 6, 207.
16.Shao, Y, Qian Wen, Q, Zhang, S, et al. (2019) Dietary supplemental vitamin D3 enhances phosphorus absorption and utilisation by regulating gene expression of related phosphate transporters in the small intestine of broilers. Br J Nutr 121, 921.
17.Yang, GQ, Yang, H, Liu, JZ, et al. (2017) Effects of soybean oligosaccharide and its functional components on skatole production and microbiota composition of broilers cecal contents in vitro. Chin J Anim Nutr 29, 40584068.
18.Kilkenny, C, Browne, WJ, Cuthill, IC, et al. (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8, e1000412.
19.Zhou, TJ, Qiao, SY, Ma, X, et al. (2015) Detection and analysis of main antinutritional factors content in soybean products. Chin J Anim Nutr 27, 221229.
20.Yi, ZH (2006) Effects of stachyose on growth performance, intestinal physiology and immune function of broilers. PhD Thesis, China Agricultural University.
21.Yang, GQ, Yin, Y, Liu, HY, et al. (2016) Effects of dietary oligosaccharide supplementation on growth performance, concentrations of the major odor-causing compounds in excreta, and the cecal microbiota of broilers. Poult Sci 95, 23422351.
22.Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–△△CT method. Methods 25, 402408.
23.Wang, Q, Guan, QN, Yang, GQ, et al. (2016) Effects of dietary inulin supplementation on growth performance, concentrations of the major odor-causing compounds in excreta and intestinal digesta of broilers. Chin J Anim Nutr 28, 38753884.
24.Zhang, P (2016) Research on the basic laws of skatole production and its variation with intestinal microbial components in broilers. Master’s Thesis, Shenyang Agricultural University.
25.Sharma, NK, Choct, M, Wu, SB, et al. (2015) Dietary composition affects odour emissions from meat chickens. Anim Nutr 1, 2833.
26.Sharma, NK, Choct, M, Dunlop, MW, et al. (2017) Characterisation and quantification of changes in odorants from litter headspace of meat chickens fed diets varying in protein levels and additives. Poult Sci 96, 851860.
27.Jensen, MT, Cox, RP & Jensen, BB (1995) Microbial-production of skatole in the hind gut of pigs given different diets and its relation to skatole deposition in backfat. Anim Sci, 61, 293304.
28.Liu, HY, Hou, R, Yang, GQ, et al. (2018) In vitro effects of inulin and soya bean oligosaccharide on skatole production and the intestinal microbiota in broilers. J Anim Physiol Anim Nutr 102, 706716.
29.Li, X (2018) Effects of soybean oligosaccharides on growth, immune, skatole concentration in excreta and cecal microflora structure in broilers. Master’s Thesis, Shenyang Agricultural University.
30.Jiang, HQ, Gong, LM, Ma, YX, et al. (2006) Effect of stachyose supplementation on growth performance, nutrient digestibility and caecal fermentation characteristics in broilers. Br Poult Sci 47, 516522.
31.Hu, HB, Zhang, YJ, Mai, KS, et al. (2015) Effects of dietary stachyose on growth performance, digestive enzyme activities and intestinal morphology of juvenile turbot (Scophthalmus maximus L). J Ocean U China 14, 905912.
32.Jensen, MT, Cox, RP & Jensen, BB (1995) 3-methylindole (skatole) and indole production by mixed population of pig fecal bacteria. Appl Environ Microbiol 61, 31803184.
33.Jensen, BB & Jensen, MT (1998) Microbial production of skatole in the digestive tract of entire male pigs. In Skatole and Boar Taint, pp. 4175 [WK Jensen, editor]. Roskilde: Danish Meat Research Institute.
34.Macfarlane, GT, Allison, C, Gibson, SAW, et al. (1988) Contribution of the microflora to proteolysis in the human large intestine. J Appl Bacteriol 64, 3746.
35.Sørensen, M, Penn, M, El-Mowafi, A, et al. (2011) Effect of stachyose, raffinose and soya-saponins supplementation on nutrient digestibility, digestive enzymes, gut morphology and growth performance in Atlantic salmon (Salmo salar, L). Aquaculture 314, 145152.
36.Rasmussen, MK (2012) Regulation of porcine hepatic cytochrome P450 by chicory root – implication for boar taint. PhD Thesis, Aarhus University.
37.Wesoly, R & Weiler, U (2012) Nutritional influences on skatole formation and skatole metabolism in the pig. Animals 2, 221242.
38.Sonawane, BR, Coates, PM, Yaffe, SJ, et al. (1983). Influence of dietary carbohydrates (alpha-saccharides) on hepatic drug metabolism in male rats. Drug Nutr Interact 2, 716.
39.Hu, SX (2013) Effect of age on hepatic cytochrome P450 of Ross 708 broiler chickens. Poult Sci 92, 12831291.
40.Antonovic, L & Martinez, M (2011) Role of the cytochrome P450 enzyme system in veterinary pharmacokinetics: where are we now? Where are we going? Future Med Chem 3, 855879.
41.Anzenbacher, P & Anzenbacherová, E (2001) Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 58, 737747.
42.Al-Dosari, MS & Parvez, MK (2016) Genetic polymorphisms of drug eliminating enzymes and transporters. Biomed Genet Genom 1, 4450.
43.Matal, J, Matuskova, Z, Tunkova, A, et al. (2009) Porcine CYP2A19, CYP2E1 and CYP1A2 forms are responsible for skatole biotransformation in the reconstituted system. Neuro Endocrinol Lett 30, 3640.
44.Zanger, UM & Schwab, M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138, 103141.
45.Lin, NN, Chen, J, Xu, B, et al. (2015) The roles of carboxylesterase and CYP isozymes on the in vitro metabolism of T-2 toxin. Mil Med Res 2, 1319.
46.Wei, CY, Wu, FB & Xu, T (2014) CYP450 and drug interactions. China Pharm 23, 1720.
47.Wiercinska, P, Lou, Y & Squires, EJ (2012) The roles of different porcine cytochrome p450 enzymes and cytochrome b5a in skatole metabolism. Animal 6, 834845.
48.Squires, EJ & Lundström, K (1997) Relationship between cytochrome P450IIEI in liver and levels of skatole and its metabolites in intact male pigs. J Anim Sci 75, 25062511.


Related content

Powered by UNSILO

Effects of dietary stachyose levels on caecal skatole concentration, hepatic cytochrome P450 mRNA expressions and enzymatic activities in broilers

  • Hai-Ying Liu (a1), Xin-Yun Zhao (a1), Gui-Qin Yang (a1), Ji-Zhe Liu (a1) and Xin Zhu (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.